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Preface

Itis a pleasure to write a new preface to The Analysis of Household Surveys on its
twentieth birthday. It would be better still if this were a preface to a new edi-
tion, and | hope that one day | shall write it. In the meantime, | hope that this
Preface might be a guide to a new reader, by labeling those parts of the book
that seem still relevant, as well as those that would be leading candidates for
revision or updating.

The origins of the book go back to the early days of the Living Standards
Measurement Study (LSMS), which was set up in the World Bank around 1980.
As its name suggests, the original idea was to promote household surveys that
would enable the better measurement of poverty and of living standards
around the world, something that was difficult to do with the data then avail-
able. As time went on, and people came and went, the LSMS surveys evolved
into multi-purpose tools that would permit not only measurement, but also
analysis, permitting a better understanding of how people’s lives work, what
makes them tick, and why they are as well off or as poorly off as they are. Hence
“the analysis” of household surveys, not just the measurement of income, or
consumption, or wellbeing. In the original conception, there were to be a series
of volumes on different specific topics, with this volume being more general,
though with examples of topics that could be covered using the approach.

Today, it is hard even to remember how relatively uncommon the analysis of
individual household records was. Although there had been important very
early studies, including the 1955 book on family budgets by Sigbert Prais and
Hendrik Houthakker—which legend has it was the first economic analysis to
use an electronic computer—and although micro analysis figured in some of
the early textbooks, most economists were trained in econometric methods
that explicitly or implicitly focused on aggregate time series. So there was a lot
of important and survey-relevant material that remained uncovered. Students
who had completed their econometrics courses and turned to household sur-
vey data found much that puzzled them.

Perhaps the most obvious gap in standard economics training was then (as
it largely still is today) the topic of survey design, and how survey design should
(if at all) be incorporated into analysis. Survey data come with “weights,’ related

Xi
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to survey design (for example, they might be the reciprocals of the probabilities
of selection), and many generations of economists have had to wonder for
themselves what should be done with them. Of course, this is standard material
for survey design statisticians, but those who design surveys do not work in the
same way economists do and sometimes have different ways of thinking and
different objectives. So, when | started writing the book, | wanted to try to
understand these issues better for myself, so | went back to the survey litera-
ture, and wrote up what | found. Chapter 1 is still one of the few treatments of
survey design from an economics perspective. One important change is that, at
around the time | was writing, STATA introduced a full suite of survey-design-
based econometric software, so it is no longer necessary for analysts to do what
| had to do, and write my own code.

Thinking about survey design forces the analyst to confront the difference
between sample and population, and to think seriously about the population
to which the analysis is supposed to apply. For survey samplers, the aim is often
the estimation of some characteristic of a finite population, such as the median
consumption of Indian families in 2015, something that could be known with
certainty from a census, a complete listing of the population. Is this the right
way of thinking about a regression analysis? Or should we consider some pos-
sible super population, of which the current population is but one possible
realization. These issues are important, and are rarely considered. As an exam-
ple, even today papers in economics and in health routinely publish standard
errors of means calculated from complete enumerations, such as mortality
rates.

In the same spirit, Chapter 2 was designed as a bridge from what is taught
in an econometrics course and what applied economists will find when they
confront microeconomic data. For several years, | used this chapter to teach a
course at Princeton that helped prepare applied students in labor and develop-
ment. When econometrics is taught by specialists, which has the huge advan-
tage of providing an overarching statistical framework, it is often useful to work
through some of the nitty-gritty issues of practice that are not conceptually
interesting, but can make the difference between convincing and unconvinc-
ing results. Sometimes this takes the form of warnings, that technical fixes
rarely fix anything by themselves, and that techniques, such as panel data
methods, which can work magic in ideal conditions, can be undermined by
imperfections of various kinds, particularly measurement error.

If | were rewriting Chapter 2 today, | would be even more skeptical. As |
taught the material over the years, it became clear that many of the uses of
instrumental variables and natural experiments that had seemed so compel-
ling at first lost a good deal of their luster with time. One problem is the reliance
of instrumental variables on exclusion restrictions. The orthogonality of instru-
ments to the error term requires that they be uncorrelated with omitted vari-
ables so that, when we are interested in the effect of x on y, and z is an
instrument, then zcan only affect y through its effect on x, and not through any
other mechanism. This often seems plausible when an instrument is first
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proposed, but over time, other researchers, or other facts, can make the story
much less plausible. There is no general rule here, and some of the studies
using natural experiments and instruments have worn well, but that is more
the exception than the rule.

Twenty years later, | now find myself very much more skeptical about instru-
ments in almost any situation. | should also note a mea culpa: the late Tony
Atkinson, in his pre-publication review of the book, had noted that instrumen-
tal variables hardly ever worked. | should have paid more attention to his views.

Natural experiments are a form of instrumental variables. They often give a
clean answer, eliminating effects that otherwise would cloud the analysis. Yet
the “clean” answer is not always the answer that we want for policy or under-
standing. This is one aspect of the familiar trade-off between internal and
external validity; a natural experiment is like a laboratory experiment where
many factors are held constant, but where we have little idea whether the
effect will be replicated in settings that may be more relevant for policy.
Of course, a good laboratory experiment tries to isolate some fundamental
mechanism that will always be present, even when modified, but such experi-
ments require more theory and background knowledge than is usually present
in natural experiments in economics. Occasionally such experiments look more
like anecdotes than analysis.

If | were writing the book today, there would be a new chapter on random-
ized controlled trials (RCTs).! Two decades ago |, like most economists, thought
that if only we could do RCTs, life would be straightforward; we could dis-
cover the laws of behavior, understand poverty, and eliminate it. And indeed,
one of the major developments in applied microeconomics in the last 20 years
has been the widespread use of RCTs, particularly in economic development.

As always, the practice has brought useful experience with its complement
of successes and failures. RCTs often yield new insights and unexpected find-
ings. Yet they also have more problems than we anticipated, both in theory and
practice. They are not magic tools, any more than panel data or instrumental
variables were magic tools. Indeed, once upon a time, economists thought of
linear regression as a magic tool, and the history of econometrics teaching has
been one in which the great enthusiasm of the early days gave way to a sadder
catalog of regression diseases and diagnostics. The same is happening and will
continue to happen with RCTs although for sure, and like regressions, they are
likely to remain useful tools. But statistical inference with RCTs is much more
difficult than it at first appears, causality can rarely be firmly established,
the influence of omitted variables is not magically erased by randomization,
and the lack of blinding—usually impossible in economics—can undermine
estimation in the same way that failure of exclusion restrictions undermines

1. For readers interested in what such a chapter would look like, a good account can be found in
my 2018 paper with Nancy Cartwright in Social Science and Medicine, Vol. 210, pp. 2-21:
“Understanding and Misunderstanding Randomized Controlled Trials,” https://doi.org/10.1016/j
.socscimed.2017.12.005.
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instrumental variable estimation. And, as is widely understood, but often for-
gotten, the fact that some mechanism works in one place is no guarantee that
it works anywhere else. RCTs cannot, by themselves, support a program of
unconditional discovery of “what works."

In the introduction to the book, | speculate about what can be done in the
absence of experiments. While | am now more skeptical about what can be
done with experiments, | continue to believe in what | wrote then. The trick is
to use the data to tell us something that we didn’t know before, and that can
help us change our minds, or see things differently. Sometimes this can be
done from simple descriptive statistics; that Indian per capita calorie consump-
tion was falling during a period of rapid economic growth was an important
finding in and of itself, and suggested a whole program of enquiry. That almost
half of all children in India were severely malnourished was a finding that then
Prime Minister Manmohan Singh described as “a national shame. Such
straightforward descriptions can have huge effects on policy, as can correla-
tions and regressions.

Causal testing can also be supported in the same way through what philoso-
phers call the “hypothetico deductive method.” Given a hypothesis or an idea,
the key is to develop and work it to the point where its implications can be
transparently checked on the data. Sometimes, this will take an RCT, but if we
are clever and diligent enough, it can often be tested by looking at old data in
new ways, from a mean, a median, or a cross-tabulation. The analytical work
goes into the drawing out of implications from the hypothesis, not into deriv-
ing complex econometric methods or technical fixes.

Chapters 3 through 6 are more substantive, though all use econometric
methods to generate their findings. All of them could be updated with new
results, and in some cases (such as the model of quality choice in Chapter 5),
I would modify or be more skeptical about the underlying assumptions. But
| believe that these chapters—as well as the STATA code that comes at the
end—serve their original purpose of providing worked examples of the sort of
analysis that survey data are suited to.

The book has been widely used since 1997, it is frequently cited, and it has
been downloaded from the Bank’s website nearly 34,000 times. | am delighted
that it will now be back in print for those who would like to have a “real” copy
on their “real” desktops.

Angus Deaton
Princeton, December 2018

References in this publication to “Taiwan,’ “Republic of China,” and “Taiwan (China)” refer to the
region, “Taiwan, China." References to “Hong Kong" refer to the region, “Hong Kong SAR, China."



Introduction

The collection of household survey data in developing countries is hardly a new
phenomenon. The National Sample Survey Organization in India has been col-
lecting such data on a regular basis since the 1940s, and there are many other
countries with long-running and well-established surveys. Until recently, however,
the handling and processing of large microeconomic data sets was both cumber-
some and expensive, so that survey data were not widely used beyond the pro-
duction of the original survey reports. In the last ten or fifteen years, the availability
of cheap and convenient microcomputers has changed both the collection and anal-
ysis of household survey data. Calculations that could be done only on multi-
million-dollar mainframes in 1980—and then with some difficulty—are now rou-
tinely carried out on cheap laptop computers. These same machines can be carried
into the field and used to record and edit data as they are provided by the res-
pondents. As a result, survey data are becoming available in a more timely fashion,
months rather than years after the end of the survey; freshly collected data are
much more useful for policy exercises than are those that are many years old. At
the same time, analysts have become more interested in exploring ways in which
survey data can be used to inform and to improve the policy process. Such ex-
plorations run from the tabulations and graphical presentation of levels of living to
more basic research on household behavior.

Purpose and intended audience

This book is about the analysis of household survey data from developing countries
and about how such data can be used to cast light on a range of policy issues. Much
of the analysis works with household budget data, collected from income and
expenditure surveys, though I shall occasionally address topics that require wider
information. I shall use data from several different economies to illustrate the
analysis, drawing examples of policy issues from economies as diverse as Cote
d’Ivoire, India, Pakistan, South Africa, Taiwan (China), and Thailand. I shall be
concerned with methodology as well as substance, and one of the aims of the book
is to bring together the relevant statistical and econometric methods that are useful
for building the bridge between data and policy. The book is not intended as a
manual for the analysis of survey data—it is hardly possible to reduce policy re-
search to a formula—but it does provide a number of illustrations of what can be

References in this publication to “Taiwan,” “Republic of China,” and “Taiwan (China)” refer to the
region, “Taiwan, China” References to “Hong Kong” refer to the region, “Hong Kong SAR, China.”
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done, with fairly detailed explanations of how to do it. Nor can a “how-to” book
provide a comprehensive review of all the development topics that have been ad-
dressed with household survey data; that purpose has already been largely met by
the microeconomic survey papers in the three volumes of the Handbook of Deve-
lopment Economics. Instead, I have focused on topics on which I have worked my-
self, in the hope that the lack of coverage will be compensated for by the detailed
knowledge that can only come from having carried out the empirical research. The
restriction to my own work also enables me to provide the relevant computer code
for almost all of the empirical results and graphics, something that could hardly be
combined with the broad coverage of a genuine survey. The Appendix gives code
and programs using STATA; in my experience, this is the most convenient package
for working with data from household surveys, The programs are not a package;
users will have to substitute their own data sets and will need sufficient basic know-
ledge of STATA to adapt the code. Nevertheless, the programs provide a template
for generating results similar to those presented and discussed here. I have also
tried to keep the programs simple, sometimes at the expense of efficiency or eleg-
ance, so that it should not be too difficult to translate the logic into other packages.

I hope that the material will be of interest to development practitioners, in the
World Bank and elsewhere, as well as to a more academic audience of students of
economic development. The material in the first two chapters is also designed to
help readers interpret applied econometric work based on survey data. But the audi-
ence that I most want to reach is that of researchers in developing countries. Statis-
tical offices, research institutes, and universities in developing countries are now
much less constrained by computation than they were only a few years ago, and the
calculations described here can be done on personal computers using readily avail-
able and relatively inexpensive software. I have also tried to keep the technical pre-
sentation at a relatively modest level. I take for granted most of what would be
familiar from a basic course in econometrics, but I devote a good deal of space to
expositions of useful techniques—such as nonparametric density and regression
estimation, or the bootstrap—that are neither widely taught in elementary econo-
metrics courses nor described in standard texts. Nevertheless, there are points
where there is an inevitable conflict between simplicity, on the one hand, and clar-
ity and precision, on the other. When necessary I have “starred” those sections or
subsections in which the content is either necessarily technical or is of interest only
to those who wish to try to replicate the analysis. Occasional “technical notes,”
usually starred, are shorter digressions that can readily be skipped at a first reading.

Policy and data: methodological issues

Household surveys provide a rich source of data on economic behavior and its links
to policy. They provide information at the level of the individual household about
many variables that are either set or influenced by policy, such as prices, transfers,
or the provision of schools and clinics. They also collect data on outcomes that we
care about and that are affected by the policy variables, such as levels of nutrition,
expenditure patterns, educational attainments, earnings, and health. Many impor-
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tant research questions concern the link between the instruments of policy and the
outcome variables: the rate of return to government-provided schooling, the effect-
iveness of various types of clinics, the equity and efficiency effects of transfers and
taxes, and the nutritional benefits of food subsidies. Because household surveys
document these links, they are the obvious data bases for this sort of policy re-
search, for evaluating the welfare benefits of public programs. Of course, associ-
ations in the data establish neither causality nor the magnitude of the effects. The
data from household surveys do not come from controlled experiments in which
the effects of a “treatment” can be unambiguously and convincingly determined.

In recent years, there has been a great deal of interest in social experiments, in-
cluding the use of household survey data to evaluate the results of social experi-
ments. Nevertheless, experiments are not always possible, and real experiments
usually deviate from the ideal in ways that present their own difficulties of inter-
pretation. In some cases, good luck, inspiration, and hard work throw up circum-
stances or data that allow a clear evaluation of policy effects in the absence of con-
trolled experiments; these “‘quasi” or “natural” experiments have been the source
of important findings as well as of some controversy. Even without such solutions,
it seems as if it ought to be possible to use standard survey data to say something
about the policy effects in which we are interested. A good starting point is to
recognize that this will not always be the case. Many policy questions are not
readily answerable at all, often because they are not well or sharply enough posed,
and even when an answer is available in principle, there is no reason to suppose
that it can be inferred from the data that happen to be at hand. Only when this is
appreciated is there much chance of progress, or even of a realistic evaluation of
what can be accomplished by empirical analysis.

Much of the empirical microeconomic literature in development uses economet-
ric and statistical methodology to overcome the nonexperimental nature of data. A
typical study would begin with a structural model of the process at hand, for
example, of the effects on individual health of opening a new clinic. Integral to the
model are statistical assumptions that bridge the gap between theory and data and
so permit both the estimation of the parameters of the model and the subsequent
interpretation of the data in terms of the theory. I have no difficulty with this
approach in principle, but often find it hard to defend in practice. The statistical and
economic assumptions are often arbitrary and frequently implausible. The econo-
metric technique can be complex, so that transparency and easy replicability are
lost. It becomes difficult to tell whether the results are genuine features of the data
or are consequences of the supporting assumptions. In spite of these problems, 1
shall spend a good deal of space in Chapter 2 discussing the variety of econometric
technique that is available for dealing with nonexperimental data. An understand-
ing of these matters is necessary in order to interpret the literature, and it is impor-
tant to know the circumstances in which technical fixes are useful.

Most of the analysis in this book follows a different approach which recognizes
that structural modeling is unlikely to give convincing and clean answers to the
policy questions with which we are concerned. Rather than starting with the theory,
I more often begin with the data and then try to find elementary procedures for
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describing them in a way that illuminates some aspect of theory or policy. Rather
than use the theory to summarize the data through a set of structural parameters, it
is sometimes more useful to present features of the data, often through simple
descriptive statistics, or through graphical presentations of densities or regression
functions, and then to think about whether these features tell us anything useful
about the process whereby they were generated. There is no simple prescription for
this kind of work. It requires a good deal of thought to try to tease out implications
from the theory that can be readily checked against the data. It also requires
creative data presentation and processing, so as to create useful and interesting styl-
ized facts. But in the end, I believe that we make more progress, not by pretending
to estimate structural parameters, but by asking whether our theories and their
policy implications are consistent with well-chosen stylized facts. Such facts also
provide convenient summaries of the data that serve as a background to discussions
of policy. I hope that the examples in this book will make the case that such an
approach can be useful, even if its aims are relatively modest.

Structure and outline

Household budget surveys collect information on who buys what goods and ser-
vices and how much they spend on them. Information on how poor people spend
their money has been used to describe poverty and to build the case for social
reform since the end of the eighteenth century, and household surveys remain the
basis for documenting poverty in developing countries today. When surveys are
carried out on a regular basis, they can be used to monitor the welfare of various
groups in society and to keep track of who benefits and who loses from develop-
ment. Large-scale national surveys allow a good deal of disaggregation and allow
us to look beyond means to other features of distributions, distinguishing house-
holds by occupational, regional, sectoral, and income groups.

In most poor countries, a large fraction of government revenue is raised by in-
direct taxes on goods and services, and many countries subsidize the prices of com-
modities such as basic foodstuffs. Household expenditure surveys, by revealing
who buys each good and how much they spend, tell us who pays taxes and who
benefits from subsidies. They thus yield a reckoning of the gainers and losers from
a proposed changes in taxes and subsidies. When data are collected on the use of
services provided by the state, such as health and education, we also discover who
benefits from government expenditures, so that survey data can be used to assess
policy reform and the effectiveness of government taxation and expenditure.

Data from household surveys are also a base for research, for testing theories
about household behavior, and for discovering how people respond to changes in
the economic environment in which they live. Some recent surveys, particularly the
World Bank’s Living Standards Measurement Surveys, have attempted to collect
data on a wide range of household characteristics and activities, from fertility and
physical measurement of weights and heights to all types of economic transactions.
Such data allow us to examine all the activities of the household and to trace the
behavioral links between economic events and individual welfare.
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This book follows the progression of the previous three paragraphs, from data
description through to behavioral analysis. Chapters 1 and 2 are preliminary to the
main purpose and are concerned with the collection of household survey data, with
survey design, and with its consequences for analysis. Chapter 1 is not meant to
provide a guide to constructing surveys in developing countries, but rather to des-
cribe those features of survey design that need to be understood in order to under-
take appropriate analysis. Chapter 2 discusses the general econometric and statis-
tical issues that arise when using survey data for estimation and inference; the tech-
niques discussed here are used throughout the rest of the book, but I also attempt
to be more general, covering methods that are useful in applications not explicitly
considered. This is not a textbook of econometrics; these two chapters are designed
for readers with a basic knowledge of econometrics who want some preparation for
working with household survey data particularly, but not exclusively, from deve-
loping countries.

Chapter 3 makes the move toward substantive analysis and discusses the use of
survey data to measure welfare, poverty, and distribution. I review the theoretical
underpinnings of the various measures of social welfare, inequality, and poverty
and show how they can be given empirical content from survey data, with illus-
trations from the Ivorian and South African Living Standards Surveys. I highlight
a number of techniques for data analysis that have proved useful in policy discus-
sions, with particular emphasis on graphical methods for displaying large amounts
of data. These methods can be used to investigate the distribution of income, in-
equality, and poverty and to examine changes in the levels of living of various
groups over time. The chapter also shows how it is possible to use the data to
examine the distributional consequences of price changes directly, without having
to construct econometric models. These methods are applied to an analysis of the
effects of rice price policy on the distribution of real income in Thailand.

Chapter 4 discusses the use of household budget data to explore patterns of
household demand. I take up the traditional topic of Engel curve analysis in devel-
oping countries, looking in particular at the demand for food and nutrition. For
many people, nutritional issues are at the heart of poverty questions in developing
countries, and Engel curve analysis from survey data allows us to measure the
relationship between the elimination of hunger and malnutrition and more general
economic development, as captured by increases in real disposable income. This
chapter also addresses the closely related question of how goods are allocated with-
in the household and the extent to which it is possible to use household data to cast
light on the topic. One of the main issues of interest is how different members of
the household are treated, especially whether boys are favored over girls. Analyses
of the effects of household composition on demand patterns can perhaps shed some
light on this, as well as on the old but vexed question of measuring the “costs” of
children. In most surveys, larger households have more income and more
expenditure, but they also have less income or expenditure on a per capita basis.
Does this mean that large households are poorer on average or that small house-
holds are poorer on average? The answer depends on whether there are economies
of scale to large households—whether two people need twice as much as one—and
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whether children, who are relatively plentiful in larger households, need less money
to meet their needs than do adults. This chapter discusses the extent to which the
survey data can be used to approach these questions.

Chapter 5 is about price reform, its effects on equity and efficiency, and how
to measure them. Because surveys provide direct information on how much is con-
sumed of each taxed or subsidized good, it is straightforward to calculate the first-
round effects of price changes, both on revenue and on the distribution of real
income. What are much harder to assess are the behavioral responses to price
changes, the degree to which the demand for the good is affected by the change in
price, and the extent to which revenues and expenditures from taxes and subsidies
on other goods are affected. The chapter discusses methods for estimating price re-
sponses using the spatial price variation that is typically quite pronounced in devel-
oping countries. These methods are sensitive enough to detect differences in price
responses between goods and to establish important cross-price effects between
goods, effects that are often large enough to substantially change the conclusions
of a policy reform exercise. Reducing a subsidy on one staple food has very
different consequences for revenue and for nutrition, depending on whether or not
there is a closely substitutable food that is also subsidized or taxed.

Chapter 6 is concerned with the role of household consumption and saving in
economic development. Household saving is a major component and determinant
of saving in most developing countries, and many economists see saving as the
wellspring of economic growth, so that encouraging saving becomes a crucial com-
ponent of a policy for growth. Others take the view that saving rates respond
passively to economic growth, the roots of which must be sought elsewhere. Survey
data can be used to explore these alternative views of the relationship between
saving and growth, as well as to examine the role that saving plays in protecting
living standards against fluctuations in income. The analysis of survey evidence on
household saving, although fraught with difficulty, is beginning to change the way
that we think about household saving in poor economies.

I have benefited from the comments of many people who have given generously
of their time to try to improve my exposition, to make substantive suggestions, and
in a few cases, to persuade me of the error of my ways. In addition to the referees,
Ishould like to thank—without implicating any of them--Martha Ainsworth, Harold
Alderman, Tony Atkinson, Dwayne Benjamin, Tim Besley, Martin Browning, Kees
Burger, Lisa Cameron, David Card, Anne Case, Ken Chay, John Dinardo, Jean
Dréze, Eric Edmonds, Mark Gersovitz, Paul Glewwe, Margaret Grosh, Bo Honorgé,
Susan Horton, Hanan Jacoby, Emmanuel Jimenez, Hendrik Juerges, Alan Krueger,
Doug Miller, Juan Mufioz, Meade Over, Anna Paulson, Menno Pradhan, Gillian
Paull, James Powell, Martin Ravallion, Jeremy Rudd, Jim Smith, T. N. Srinivasan,
David Stromberg, Alessandro Tarozzi, Duncan Thomas, and Galina Voronov. I
owe special thanks to Julie Nelson, whose comments and corrections helped shape
Chapter 5, and to Christina Paxson, who is the coauthor of much of the work
reported here. Some of the work reported here was supported by grants from the
National Institute of Aging and from the John D. and Catherine T. MacArthur
Foundation. The book was written for the Policy Research Department of the
World Bank. '



1 The design and content
of household surveys

In his splendid essay on early studies of consumer behavior, Stigler (1954, p. 95)
tells how the first collectors of family budgets, the Englishmen Reverend David
Davies (1795) and Sir Frederick Morton Eden (1797), were “stimulated to this task
by the distress of the working classes at this time.” Davies used his results to draw
attention to the living conditions of the poor, and to argue in favor of a minimum
wage. The spread of working-class socialism in Europe in the late 1840s also
spawned several compilations of household budgets, including the one of 200
Belgian households by Edouard Ducpetiaux in 1855 that was used two years later
by Ernst Engel, not only as the basis for his law that the fraction of the budget
devoted to food is larger for poorer families, but also to estimate the aggregate
consumption, not of Belgium, but of Saxony! The use of budget data to expose
poverty and living standards, to argue for policy reform, and to estimate national
aggregates are all topics that are as relevant today as they were two centuries ago.
The themes of the research were set very early in the history of the subject.

The early investigators had to collect data where they could find it, and there
was no attempt to construct representative samples of households. Indeed, the un-
derstanding that population totals can be estimated from randomly selected samples
and the statistical theory to support such estimation were developed only in the first
quarter of this century. Around the turn of the century, Kiaer in Norway and
Wright in the United States were among the first to use large-scale representative
samples, but the supporting statistical theory was not fully worked out until the
1920s, with Bowley, Ronald Fisher, and Neyman making important contributions.
The acceptance of sampling is well illustrated by the case of Rowntree, who was
unpersuaded by the reliability of sampling when he undertook his survey of
poverty in the city of York in 1936. Having collected a full census, he was later
convinced by being able to reproduce most of the results from samples drawn from
his data (see the supplementary chapter in Rowntree 1985). One of the first large-
scale scientific surveys was carried out by Mahalanobis in Calcutta, who estimated
the size of the jute crop in Bengal in 1941 to within 2.8 percent of an independent
census at less than 8 percent of the cost—see Mahalanobis (1944, 1946) for the
classic early accounts, and Seng (1951) and Casley and Lury (1981, ch. 1) for more
history and citations to the early literature.

References in this publication to “Taiwan,” “Republic of China,” and “Taiwan (China)” refer to the
region, “Taiwan, China” References to “Hong Kong” refer to the region, “Hong Kong SAR, China.”
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Modern household surveys begin after World War II. Under the leadership of
Mahalanobis at the Indian Statistical Institute in Calcutta, the Indian National
Sample Survey (Nss) started the annual collection of household consumption data
in 1950. Many other economies, both industrialized and developing, now have
regular household consumption surveys, sometimes on an annual basis, as in India
until 1973-74, or in Taiwan, The Republic of Korea, Britain, and the United States
today, but more often less frequently, as for example in India after 1973-74 (quin-
quennially), the United States prior to 1980, and many other countries. These sur-
veys were often intended to provide data on poverty and income distribution, for
example in the form of frequency distributions of households by levels of living—
usually defined by per capita income or consumption—but this was by no means
their only purpose. In many cases, the surveys were designed to produce aggregate
data, to help complete the national accounts, to provide weights for consumer price
indexes, or to provide the basis for projecting demand patterns in planning exer-
cises. Once begun, it was typically difficult to change the mode of operation or to
use the data for purposes different from those in the original design. The former
would generate incompatibilities and inconsistencies in the data, while the latter
required a computational capacity and willingness to release household-level data
that were rarely in evidence. There are, of course, genuine confidentiality issues
with household information, but these can be met by removing some information
from the publicly available data, and hardly justify their treatment as state secrets.

Recent years have seen a marked change in survey practice, in data collection,
and in analysis. Although there are still laggard countries, many government statis-
tical offices have become more open with their data and have given bona fide
researchers and international organizations access to the individual household rec-
ords. Reductions in the real cost of computation have led to more analysis, al-
though it is only in the last few years that mass-storage devices and cheap memory
have made it convenient to use microcomputers to analyze large data sets. Perhaps
as important have been changes in the design of surveys, and there is now a much
wider range of survey instruments in use than was the case a decade ago. Following
a number of experimental and innovative surveys in the 1960s and 1970s—parti-
cularly the Malaysian Family Life Survey in 1976-77—the World Bank’s Living
Standards Surveys first collected data in Peru and Cote d’Ivoire in 1985 and in-
corporated important innovations in data collection and in content. Originally de-
signed to improve the World Bank’s ability to monitor poverty and to make inter-
national comparisons of living standards, poverty, and inequality, they evolved into
vehicles for collecting comprehensive information on a wide range of household
characteristics and activities. The rapid availability and ease of analysis of survey
data has led to a productive feedback from analysis to design that was rare prior to
1980. In consequence, survey practice and questionnaire design are probably
changing more rapidly now than ever before.

This chapter and the next, which are preliminary to the analytical studies in the
rest of the book, are concerned with the design and content of household surveys
(this chapter) and with its implications for statistical and econometric analysis (the
final section of this chapter and Chapter 2). In line with the substantive studies later
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in the book, I give disproportionate attention to income and expenditure surveys,
or to the income and expenditure sections of broader, integrated surveys such as the
Living Standards Surveys. Even so, much of the discussion carries over to other
types of household survey, for example to employment or fertility surveys, though
I do not give explicit attention to those topics.

The four sections of this chapter are concerned with the design of surveys, with
the type of data that they collect, and with the effect of design on the calculation
of descriptive statistics such as means. Section 1.1 discusses the practical and statis-
tical issues concerned with choosing households for inclusion into a survey. Sec-
tion 1.2 is concerned with the types of data that are usually collected, and their
likely quality. Section 1.3 focusses on the particular features of the Living Stand-
ards Surveys from which data are used in some of the later chapters. Many of the
policy analyses that use household survey data were not contemplated when the
surveys were designed, so that mechanical calculations that ignore the design of the
survey can produce unpredictable results. For example, surveys that are designed
to estimate means or population totals may be quite unsuitable for measuring dis-
persion. In most surveys some types of households are overrepresented relative to
their share in the population, while others are underrepresented, so that corrections
have to be made to calculate genuinely representative totals. It is also wise to be
sensitive to the possibility—in most cases the certainty—of measurement errors,
to their effects on the calculations, and to strategies that can be used to protect
inference in their presence. These issues are further complicated when, as in some
of the Living Standards Surveys, households are observed on more than one occa-
sion, and we are interested in analyzing changes in behavior over time. Section 1.4,
which is more technical than the others, presents some of the most useful formulas
for estimating means and their sampling variability taking into account the survey
design. The discussion is useful both for Chapter 2, where I move from descriptive
statistics to a more econometric approach, and for Chapter 3, where I deal with
poverty measures, which are a particular kind of descriptive statistic. This section
also contains a brief introduction to the bootstrap, a technique that is often useful
for calculating standard errors and confidence intervals.

1.1 Survey design

The simplest household survey would be one where there exists a reliable, up-to-
date list of all households in the population, where the design assigns an equal
probability to each household being selected from the list to participate in the
survey and where, in the implementation stage, all households asked to participate
actually do so. The sample would then be a simple random sample, with each
household standing proxy for an equal number of households in the population,
Such samples are easy to use and a few actual surveys approximate this simple
structure. However, for a number of good and some not-so-good reasons, most
surveys are a good deal more complex. I begin by discussing the list (or frame)
from which households are selected and which defines the potential coverage of the
survey, and then pass on to stratification and sampling issues.
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Survey frames and coverage

A typical household survey collects data on a national sample of households, ran-
domly selected from a “frame” or national list of households. Sample sizes vary
widely depending on the purpose of the survey, on the size of the population in the
country being surveyed, and on the degree to which regional or other special sub-
samples are required. Sample sizes of around 10,000 are frequently encountered,
which would correspond to a sampling fraction of 1:500 in a population of 5
million households, or perhaps 25 million people. Since the accuracy of sample
statistics increases less than proportionally with the sample size—usually in propor-
tion to its square root—sampling fractions are typically smaller in larger popula-
tions, a tendency that is reinforced by limits on the size of survey that can be
mounted by many data collection agencies. Nevertheless, there are some very large
surveys such as the current Indian NSS, where a full national sample contains
around a quarter of a million households.

The frame is often a census, which in principle provides a list of all households
and household members, or at least of all dwellings. However, there are many
countries where there is no up-to-date census, or no reliable recent census, so that
other frames have to be constructed, usually from administrative records of some
kind (see Casley and Lury 1981, ch. 6, who discuss some of the possibilities). Per-
haps the most common method of selecting households from the frame uses a two-
stage design. At the first stage, selection is from a list of “clusters” of households,
with the households themselves selected at the second stage. In rural areas, the
clusters are often villages but the choice will depend on the frame. Censuses have
their own subunits that are suitable for first-stag> sampling. Once the clusters are
chosen, households can be selected directly if an up-to-date list is available, and if
the list is detailed enough to allow identification in the field. Otherwise, all house-
holds in the selected clusters can be listed prior to the second stage. Since it is often
possible to include some household information at the listing stage, the procedure
allows the second-stage selection of individual households to be informed by prior
knowledge, a possibility to which I shall return in the next subsection. Note finally
that two-stage sampling is not inconsistent with each household in the population
having an equal chance of selection into the sample. In particular, if clusters are
randomly selected with probability proportional to the number of households they
contain, and if the same number of households is selected from each cluster, we
have a self-weighting design in which each household has the same chance of being
included in the survey.

The use of outdated or otherwise inaccurate frames is an important source of
error in survey estimates. It should also be noted that in some countries—including
the United States—censuses are politically sensitive so that various interest groups
can be expected to try to interfere with the count. Even when the frame is accurate
in itself, its coverage of the population will typically not be complete. Homeless
people are automatically excluded from surveys that start from households, and in
many countries people living in various institutional settings—the armed forces or
workers’ dormitories—will be excluded.
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One example of the differences between a sample and population is provided
by the data in Figure 1.1, which shows age-sex pyramids for Taiwan for selected
years between 1976 and 1990. There are two pyramids for each year; those on the
left-hand side were calculated from household survey data, and were previously
reported in Deaton and Paxson (1994a), while those on the right-hand side are cal-
culated from the official population data in Republic of China (1992). The survey
data, which are described in detail in Republic of China (1989), come from a set
of surveys that have been carried out on a regular basis since 1976, and that are
carefully and professionally conducted. The 1976 sample has data on some 50,000
individuals, while the later years cover approximately 75,000 persons; the popu-
lation of Taiwan grew from 16.1 million in 1975 to 20.4 million in 1990.

The differences between the two sets of pyramids is partly due to sampling
error—each year of age is shown in the graphs—but there are also a number of dif-
ferences in coverage. The most obvious of these causes the notches in the sample
pyramids for men aged 18 to 20. Taiwanese men serve in the military during those
years and are typically not captured in the survey, and roughly two-thirds of the age
group is missing. These notches tend to obscure what is one of the major common
features of both population and sample, the baby boom of the early 1950s. In 1988
and 1990, there is some evidence that the survey is missing young women,
although the feature is much less sharp than for men and is spread over a wider age
range. The design feature in this case is that the survey does not include women
attending college nor those living in factory dormitories away from home. As the

Figure 1.1. Age and sex pyramids for survey data and population,
Taiwan (China), selected years, 1976-90
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population pyramids make clear, some of these women—together with the men in
the same age group—are genuinely “missing” in the sense that the cohort of babies
born around 1975 is substantially smaller than those immediately preceding or suc-
ceeding it. A number of other distinctive features of these graphs are not design
effects, the most notable being the excess of men over women that is greatest at
around age 45 in 1976, and moves up the age distribution, one year per year, until
it peaks near age 60 in 1990. These men are the survivors of Chiang Kai-shek’s
army who came to Taiwan after their defeat by the communists in 1949,

The noncoverage of some of the population is typical of household surveys and
clearly does not prevent us from using the data to make inferences. Nevertheless,
itis always wise to be careful, since the missing people were not missed at random
and will typically have different characteristics from the population as a whole. In
the Taiwanese case, we should be careful not to infer anything about the behavior
of young Taiwanese males. Another notable example comes from Britain, where
the annual Family Expenditure Survey (FES) regularly underestimates aggregate
alcohol consumption by nearly a half. Much of the error is attributed to coverage;
there is high alcohol consumption among many who are excluded from the survey,
primarily the military, but also innkeepers and publicans (see Kemsley and others
1980). To the effects of noncoverage by design can be added the effects of non-
respondents, households that refuse to join the survey. Nonresponse is much less
of a problem in developing countries than in (for example) the United States, where
refusal to participate in surveys has been increasing over time. Although many
surveys in developing countries report almost complete cooperation, there will al-
ways be specific cases of difficulty, as when wealthy households are asked about
incomes or assets, or when households are approached when they are preoccupied
with other activities. Once again, some of the low alcohol reports in the British data
reflect the relatively low response rates around Christmas, when alcohol consump-
tion is highest (see Crooks 1989, pp. 39—44). It is sometimes possible to study sur-
vey nonresponse patterns by tracing refusals in a contemporaneous census, using
data from the census to assess the determinants of refusal in the survey (see
Kemsley 1975 for such an exercise for the British FES using the 1971 census).
Sometimes the survey itself will collect some information about nonrespondents,
for example about housing. Groves (1989, ch. 4) discusses these and other tech-
niques for assessing the consequences of nonresponse.

Strata and clusters

A two-stage sample design, first selecting clusters and then households, generates
a sample in which sample households are not randomly distributed over space, but
are geographically grouped. This arrangement has a number of advantages beyond
the selection procedure. It is cost-effective for the survey team to travel from
village to village, spending substantial time in each, instead of having to visit
households that are widely dispersed from one another. Clustered samples also fa-
cilitate repeat visits to collect information from respondents who may not have
been present at the first visit, to monitor the progress of record keeping, or to ask
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supplementary questions about previous responses that editing procedures have
marked as suspect. That there are several households in each village also makes it
worthwhile to collect village-level information, for example on schools, clinics,
prices, or agroclimatic conditions such as rainfall or crop failures. (Though the
clusters defined for statistical purposes will not always correspond to well-defined
“communities.”) For all these reasons, nearly all surveys in developing countries
(and elsewhere, with telephone surveys the notable exception) use clustered
samples.

The purposes of the survey sometimes dictate that some groups be more in-
tensively sampled than others, and more often that coverage be guaranteed for
some groups. There may be an interest in investigating a “target” group that is of
particular concern, and, if members of the group are relatively rare in the popu-
lation as a whole, a simple random sample is unlikely to include enough group
members to permit analysis. Instead, the sample is designed so that households with
the relevant characteristic have a high probability of being selected. For example,
the World Bank used a Living Standards—type survey in the Kagera region of Tan-
zania to study the economic effects of AIDS. A random sample of the population
would not produce very many households with an infected person, so that care was
taken to find such households by confining the survey to areas where infection was
known to be high and by including questions about sickness at the listing stage, so
that households with a previous history of sickness could be oversampled.

More commonly, the survey is required to generate statistics for population
subgroups defined (for example) by geographical area, by ethnic affiliation, or by
levels of living. Stratification by these groups effectively converts a sample from
one population into a sample from many populations, a single survey into several
surveys, and guarantees in advance that there will be enough observations to permit
estimates for each of the groups.

There are also statistical reasons for departing from simple random samples;
quite apart from cost considerations, the precision of any given estimate can be en-
hanced by choosing an appropriate design. The fundamental idea is that the survey-
or typically knows a great deal about the population under study prior to the sur-
vey, and the use of that prior information can improve the efficiency of statistical
inference about quantities that are unknown. Stratification is the classic example.

Suppose that we are interested in estimating average income, that we know that
average rural incomes are lower than average urban incomes, and we know the
proportions of the population in each sector. A stratified survey would be two
identical surveys, one rural and one urban, each of which estimates average in-
come. (It would not necessarily be the case that the sampling fractions would be the
same in each stratum.) The average income for the country as a whole, which is the
quantity in which we are interested, is calculated by weighting together the urban
and rural means using the proportions of the population in each as weights—which
is where the prior information comes in. The precision of this combined estimate
is assessed (inversely) from its variance over replications of the survey. Because
the two components of the survey are independent, the variance of the overall mean
is the sum of the variances of the estimates from each strata. Hence, variance de-
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pends only on within-sector variance, and not on between-sector variance. If
instead of a stratified survey, we had collected a simple random sample, the vari-
ance of the overall mean would still have depended on the within-sector variances,
but there would have been an additional component coming from the fact that in
different surveys, there would have been different fractions of the sample in rural
and urban. If rural and urban means are different, this variability in the composition
of the sample will contribute to the variability of the estimate of the overall mean.
In consequence, stratification will have the largest effect in reducing variance when
the stratum means are different from one another, and when there is relatively little
variation within strata. The formulas that make this intuition precise are discussed
in Section 1.4 below.

In household income and expenditure surveys, rural and urban strata are nearly
always distinguished, and sometimes there is additional geographic stratification,
by regions or provinces, or by large and small towns. Ethnicity is another possible
candidate for stratification, as is income or its correlates if, as is often the case,
some indication of household living standards is included in the frame or in the
listing of households—Ilandholdings and housing indicators are the most frequent
examples. Stratification can be done explicitly, as discussed above, or “implicitly.”
The latter arises using “systematic” sampling in which a list of households is
sampled by selecting a random starting point and then sampling every jth house-
hold thereafter, with j set so as to give the desired sample size. Implicit stratifica-
tion is introduced by choosing the order in which households appear on the list. An
example is probably the best way to see how this works. In the 1993 South African
Living Standards Survey, a list was made of clusters, in this case “census enumer-
ator subdistricts” from the 1991 census. These clusters were split by statistical
region and by urban and rural sectors—the explicit stratification—and then in order
of percentage African—the implicit stratification. Given that the selection of
clusters was randomized only by the random starting point, the implicit stratifica-
tion guarantees the coverage of Africans and non-Africans, since it is impossible
for a sample so selected not to contain clusters from high on the list, which are
almost all African, and clusters low on the list, which are almost all non-African.

While stratification will typically enhance the precision of sampling estimates,
the clustering of the sample will usually reduce it. The reason is that households
living in the same cluster are usually more similar to one another in behavior and
characteristics than are households living in different clusters. This similarity is
likely to be more pronounced in rural areas, where people living in the same village
share the same agroclimatic conditions, face similar prices, and may belong to the
same ethnic or tribal group. As a result, when we sample several households from
the same cluster, we do not get as much information as we would from sampling
several households from different clusters. In the (absurd) limit, if everyone in the
same cluster were replicas or clones of one another, the effective sample size of the
survey would not be the number of households, but the number of clusters. More
generally, the precision of an estimate will depend on the correlation within the
cluster of the quantity being measured; once again, the formulas are given in
Section 1.4 below.



THE DESIGN AND CONTENT OF HOUSEHOLD SURVEYS 15

A useful concept in assessing how the sample design affects precision is Kish’s
(1965) “design effect,” often referred to as deff. Deff is defined as the ratio of the
variance of an estimate to the variance that it would have had under simple random
sampling; some explicit examples are included in Section 1.4. Stratification tends
to reduce deff below one, while clustering tends to increase it above one. Estimates
of the means of most variables in stratified clustered samples have deffs that are
greater than one (Groves 1989, ch. 6), so that in survey design the practical conven-
ience and cost considerations of clustering usually predominate over the search for
variance-reduction.

Unequal selection probabilities, weights, and inflation factors

As we have seen, it is possible for a survey to be stratified and clustered, and for
each household in the population to have an equal probability of inclusion in the
sample. However, it is more common for probabilities of inclusion to differ, be-
cause it costs more to sample some households than others, because differential
probabilities of inclusion can enhance precision, and because some types of house-
holds may be more likely to refuse to participate in the survey. Because noncoop-
eration is rarely taken into account in design, even samples that are meant to have
equal probabilities of selection often do not do so in practice.

Variation in costs is common, for example between rural and urban households.
In consequence, the cost of any given level of precision is minimized by a sample
in which urban households are overrepresented and rural households underrepre-
sented. The use of differential selection probabilities to enhance precision is per-
haps less obvious, but the general principle is the same as for stratification, that
prior information can be used to tell us where to focus measurement. To fix ideas,
suppose again that we are estimating mean income. The estimate will be more
precise if households that contribute a large amount to the mean—high-income
households—are overrepresented relative to low-income households, who contri-
bute little. This is “probability proportional to size,” or p.p.s., sampling. Of course,
we do not know household income, or we would not have to collect data, but we
may have information on correlated variables, such as landholdings or household
size. Overrepresentation of large households or large landholding households will
typically lead to more precise estimates of mean income (see again Section 1.4 for
formulas and justification).

When selection probabilities differ across households, each household in the
survey stands proxy for or represents a different number of households in the popu-
lation. In consequence, when the sample is used to calculate estimates for the popu-
lation, it is necessary to weight the sample data to ensure that each group of
households is properly represented. Sample means will not be unbiased estimates
of population means and we must calculate weighted averages so as to “undo” the
sample design and obtain estimates to match the population. The rule here is to
weight according to the reciprocals of sampling probabilities because households
with low (high) probabilities of selection stand proxy for large (small) numbers of
households in the population. These weights are often referred to as “raising” or
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“inflation” factors because if we multiply each observation by its inflation factor
we are estimating the total for all households represented by the sample household,
and the sum of these products over all sample households is an estimate of the
population total. Inflation factors are typically included in the data sets together
with other variables.

Table 1.1 shows means and standard deviations by race of the inflation factors
for the 1993 South African survey. This is an interesting case because the original
design was a self-weighting one, in which there would be no variation in inflation
factors across households. However, when the survey was implemented there were
substantial differences by race in refusal rates, and there were a few clusters that
could not be visited because of political violence. As a result, and in order to allow
the calculation of unbiased estimates of means, inflation factors had to be
introduced after the completion of the fieldwork. The mean weight for the 8,848
households in the survey is 964, corresponding to a population of households of
8,530,808 (= 8,848 x 964). Because whites were more likely to refuse to participate
in the survey, they attract a higher weight than the other groups.

This South African case illustrates an important general point about survey
weights. Differences in weights from one household to another can come from dif-
ferent probabilities of selection by design, or from different probabilities by accid-
ent, because the survey did not conform to the design, because of non-response,
because households who cooperated in the past refused to do so again, or because
some part of the survey was not in fact implemented. Whether by design or accid-
ent, there are ex post differences in sampling probabilities for different households,
and weights are needed in order to obtain accurate measures of population quan-
tities. But the design weights are, by construction, the reciprocals of the sampling
probabilities, and are thus controlled in a way that accidental weights are not.
Weights that are added to the survey ex post do not have the same pedigree, and are
often determined by judgement and modeling. In South Africa, the response rate
among White households was lower, so the weights for White households were ad-
justed upwards. But can we be sure that the response rate was truly determined by
race, and not, for example, by some mixture of race, income, and location? Adop-
tion of survey weights often involves the implicit acceptance of modeling decisions
by survey staff, decisions that many investigators would prefer to keep to them-

Table 1.1. Inflation factors and race, South Africa, 1993

Standard Households in

Race Mean weight deviation sample
Blacks 933 79 6,533
Coloreds 955 55 690
Asians 885 22 258
Whites 1,135 219 1,367
All 964 133 8,848

Source: Author’s calculations using the South African Living Standards Survey, 1993.
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selves. At the least, survey reports should document the construction of such
weights, so that other researchers can make different decisions if they wish.

Sample design in theory and practice

The statistical arguments for stratification and differential sampling probabilities
are typically less compelling in developing-country surveys than are the practical
arguments. Optimal design for precision works well when the aim of the survey is
the measurement of a single magnitude—average consumption, average income,
or whatever. Once this objective is set, all the tools of the sample survey statistician
can be brought to bear to design a survey that will deliver the best estimate at the
lowest possible cost. Such single-purpose surveys do indeed occur from time to
time and more frequently there is a main purpose, such as the estimation of weights
for a consumer price index, or the measurement of poverty and inequality. Even in
these cases, however, it is recognized that there are other uses for the data, and in
general-purpose household surveys there is a range of possible applications, each
of which would mandate a different design. Precision for one variable is impreci-
sion for another, and it makes no sense to design a survey for each. In addition,
optimizing for one purpose can make it difficult to use the survey for other pur-
poses. A good example is the Consumer Expenditure Survey in the United States,
where the main aim is the calculation of weights for the consumer price index. That
object is relentlessly pursued, with some expenditures obtained by interviewing
some households, some expenditures obtained by diary from other households, and
each household is visited five times over fifteen months but with different kinds of
data collected at each visit. All of this allows a relatively small sample to deliver
good estimates of the average American spending pattern, but the complexity of the
design makes it difficult—sometimes even impossible—to make calculations that
would have been possible under simpler designs.

Another problem with optimal schemes is that the selection of households
according to efficiency criteria can compromise the usefulness of the data. For ex-
ample, the use of public transport is efficiently estimated by interviewing travelers,
and travelers are most easily and economically found by conducting “on-board”
surveys on trains, on buses, or at stations. But if we are to study what determines
the demand for travel, and who benefits from state subsidies to public transport, we
need to know about nontravelers too, information that is better collected in standard
household surveys. Indeed, if observations are selected into the sample according
to characteristics that are correlated with the magnitude being studied—precisely
the recipe in p.p.s. sampling—attempts to estimate models that explain that magni-
tude are likely to be compromised by the selection of the sample. This “choice-
based sampling” problem has been studied in the literature (see Manski and Ler-
man 1977, Hausman and Wise 1977, 1981, and Cosslett 1993) and there exist tech-
niques for overcoming the difficulties. But once again it is much easier to work
with a simpler survey, and the results are likely to be more comprehensible and
more convincing if they do not require complex corrections, especially when the
corrections are supported by assumptions that are difficult or impossible to check.
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There are also good practical reasons for straightforward designs. In their book
on collecting data in developing countries, Casley and Lury (1981, p. 2) summarize
their basic message in the words “keep it simple.” As they point out:

The sampling errors of any rational design involving at least a moderate sample size
are likely to be substantially smaller than the nonsampling errors. Complications of
design may create problems, resulting in larger nonsampling errors, which more than
offset the theoretical benefits conferred.

As we shall see, the econometric analysis will have to deal with a great many
problems, among which nonsampling errors are not the least important. Correction
for complex designs is an additional task that is better avoided whenever possible.

Panel data

The standard cross-sectional household survey is a one-time affair and is designed
to obtain a snapshot of a representative group of households at a given moment in
time. Although such surveys take time to collect (frequently a year) so that the
“moment in time” varies from household to household, and although households
are sometimes visited more than once, for example to gather information on
income during different agricultural seasons, the aim of the survey is to gather
information from each household about a given year’s income, or about consump-
tion in the month previous to the interview, or about the names, sexes, and ages of
the members of the household on the day of the interview.

By contrast, longitudinal or panel surveys track households over time, and
collect multiple observations on the same household. For example, instead of gath-
ering income for one year, a panel would collect data on income for a number of
years, so that, using such data, it is possible to see how survey magnitudes change
for individual households. Thus, the great attraction of panel data is that they can
be used to study dynamics for individual households, including the dynamics of
living standards. They can be used to address such issues as the persistence of
poverty, and to see who benefits and who loses from general economic develop-
ment, or who gains and loses from a specific shock or policy change, such as a
devaluation, a structural adjustment package, or a reduction in the prices of com-
modity exports. However, as we shall see in Chapter 2, panel data are not required
to track outcomes or behavior for groups of individuals—that can be done very
well with repeated cross-sectional surveys—but they are the only data that can tell
us about dynamics at the individual level. Panel surveys are relatively rare in gener-
al, and particularly so in developing countries. The panel that has attracted the
greatest attention in the United States is the Michigan Panel Study of Income
Dynamics (pSID), which has been following the members of about 4,800 original
households since 1968. The most widely used panel data from a developing coun-
try come from the Institute for Crop Research in the Semi-Arid Tropics (ICRISAT)
in Hyderabad, India, which followed some 40 agricultural households in each of
six villages in southwestern India for five or ten years between 1975 and 1985.



THE DESIGN AND CONTENT OF HOUSEHOLD SURVEYS 19

These long-standing surveys are not the only way in which panel data can be
collected; an alternative is a rotating panel design in which some fraction of
households is held over to be revisited, with the rest dropped and replaced by new
households. Several of the Living Standards Surveys—to be discussed in Section
1.3 below—have adopted such a design. For example, in Céte d’Ivoire, 1,600
households were selected into the 1985 survey, 800 of which were retained in
1986. To these original panelists 800 new households were added in 1986, and
these were retained into 1987. By the pattern of rotation, no household is observed
for more than two years, so that while we have two observations in successive
years on each household (apart from half of the start-up households) we do not get
the long-term observation of individual households that come from panel data.

A third way of collecting data is to supplement cross-sectional data. Occasion-
ally this can be done by merging administrative and survey data. More often, an
earlier cross-sectional survey is used as the basis for revisiting households some
years after the original survey. If records have been adequately preserved, this can
be done even when there was no intention in the original survey of collecting panel
data; indeed, it is good practice to design any household survey so as to maximize
the probability of recontacting the original respondents. Such methods have been
successful in a number of instances. Although the Peruvian Living Standards Sur-
vey of 1985-86 was designed as a cross section, households living in Lima were
revisited in 1990; of the 1,280 dwellings in the original survey, 1,052 were reinter-
viewed (some dwellings no longer existed, or the occupants refused to cooperate)
and, of these, 745 were occupied by the same family (Glewwe and Hall 1995). In
1988-89, RAND carried out a successful reinterview of nearly three-quarters of the
individuals in the original 1976-77 Malaysian Family Life Survey (Haaga, Da-
Vanzo, Peterson, and Peng 1994). Bevan, Collier, and Gunning (1989, Appendix)
also appear to have been successful in relocating a high fraction of households in
East Africa; in Kenya a 1982 survey reinterviewed nearly 90 percent of survey
households first seen in 197778, while in Tanzania, 73 percent of the households
in a 1976~77 survey were reinterviewed in 1983.

In some cases, panel data can be constructed from a single interview by asking
people to recall previous events. This works best for major events in people’s lives,
such as migration or the birth or death of a child; it is likely to be much more
difficult to get an accurate recollection of earnings or expenditures in previous
years. There is a substantial literature on the accuracy of recall data, and on the
various biases that are induced by forgetting and selective memory (see Groves
1989, ch. 9.4). In the context of developing countries, Smith, Karoly, and Thomas
(1992) and Smith and Thomas (1993) use their repeat of the Malaysian Family Life
Survey to compare recollections about migrations in the first and second surveys.

As well as their unique advantages, panel data have a number of specific prob-
lems. One of the most serious is attrition, whereby for one reason or another,
households are lost from the survey, so that as time goes on, fewer of the original
households remain in the survey. The extent of attrition is affected by the design
of the panel, whether or not the survey follows individuals who leave the original
households or who move away from the original survey area. Another reason for
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attrition is refusal; households that have participated once are sometimes unwilling
to do so again. Refusal rates are typically lower in surveys in developing countries,
and presumably attrition is too. In industrial countries with long-running surveys
such as the PSID, there can be a substantial loss of panel members in the first few
years until the panel “settles down.” Becketti and others (1988) show that although
12 to 15 percent of the individuals in the PSID do not reappear after the first inter-
view, the subsequent attrition rate is much lower so that, for example, of the indivi-
duals in the first wave in 1968, 61.6 percent were still present fourteen years later.

Even when households are willing to cooperate, there may be difficulties in
finding them at subsequent visits; individuals may move away, and the households
may cease to exist if the head dies, or if children split off to form households of
their own. Depending on whether the survey attempts to follow these migrants and
“splits,” as well as whether new births or immigrants are added to the sample, the
process of household dissolution and formation can result in changes in the repre-
sentativeness of the sample over time. (Or what appears to be a panel may not be,
if enumerators substitute the new household for the old one without recognizing or
recording the change.) There is therefore likely to be a tradeoff between, on the one
hand, obtaining a representative sample, which is best done by drawing a new
sample each year and, on the other hand, tracking individual dynamics, which re-
quires that households be held over from year to year. Even so, Becketti and others
(1988) found no serious problems of representativeness with the PSID when they
compared the fourteen-year-old panel with the population of the United States.

Although the main attractions of panel data are for analytical work, for the mea-
surement of dynamics and for controlling for individual histories in assessing
behavior, panel designs can also enhance the precision of estimates of aggregate
or average quantities. The standard example is estimating changes. Suppose that
we compare the case of two independent cross sections with a panel, in which the
same households appear in the two time periods. From both designs, the change in
average income, say, would be estimated by the difference in average incomes in
the two periods. The variance of the estimate from the two cross sections would be
the sum of the variances in the two periods because each cross-sectional sample is
drawn independently. In the panel survey, by contrast, the same households appear
in both periods, so that the variance of the difference is the sum of the variances of
the individual means less twice the covariance between the two estimates of mean
income. If there is a tendency for the same households to have high (or low) in-
comes in both periods—which we should expect for incomes and will be true for
many other quantities—the covariance will be positive and the variance of the esti-
mated change will be less than the sum of the variances of the two means.

The greatest precision will be obtained from a panel, a rotating panel, or inde-
pendent cross sections depending on the degree of temporal autocorrelation in the
quantity being estimated. The higher the autocorrelation, the larger the fraction of
households that should be retained from one period to the next. The formulas are
given in Hansen, Hurwitz, and Madow (1953, pp. 268-72) and are discussed in the
context of developing countries by Ashenfelter, Deaton, and Solon (1986). Provid-
ed precision is the main aim, a rotating panel is a good compromise; for example,
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retaining only half the households from one period to the next will give a standard
error for the change that is at most 30 percent larger than the standard error from
the complete panel that is the optimal design, and will do better than this when the
autocorrelation is low. Given that most surveys are multipurpose, and that there is
a need to measure levels as well as changes, there is a good argument for consider-
ing rotating panels.

When using panel data to measure differences, it is important to be alive to the
possibility of measurement (nonsampling) error and to its consequences for various
kinds of analysis; indeed, the detection and control of measurement error will be
one of the main refrains of this book. Suppose, to fix ideas, that household i in
period ¢ reports, not the true value x, but x, defined by

(1.1) Xy =X, €,

where €, is a mean zero measurement error with cross-sectional variance w?, and
where I assume for convenience that the error variance is the same in both periods.
If the reporting error is uncorrelated with the truth, then the variance of measured
x is the variance of the true x—the signal—plus the variance of the measurement
error—the noise. If the observations are differenced over time, we have

(1.2) Ax; = Ax,+Ae,; var(Ax,) = var(Ax,) + 20*(1-p)

where p is the correlation between the errors in the two periods.

There are several important consequences of (1.2). Note first that the presence
of measurement error is likely to further enhance the advantages of panel data over
independent cross sections for measuring changes in the means, at least if the same
individuals tend to make the same reporting errors period after period. Second, the
signal-to-noise ratio will be different for the changes in (1.2) than for the levels in
(1.1). The prototypical example is where the underlying variable x changes only
slowly over time, so that the variance of the true changes is smaller than the vari-
ance of the levels. By contrast, the variance of the measurement error in changes
will be double that in levels if p = 0, and will be increased by the differencing un-
less p > 0.5. There is no general result here, but there will be many cases in house-
hold survey data where the variance of the measured changes will be dominated by
measurement error, even when the measurement of the levels is relatively accurate.

The data in Table 1.2 are taken from the 1985-86 panel of the Living Standards
Survey of Cote d’Ivoire and illustrate a number of these issues. The figures shown
are summary statistics for consumption and income for 730 panel households who
were in the survey in both years. Although the original design called for 800 panel-
ists, not all households could be found in the second wave, nor yielded useful data.
While there is no direct way of assessing the size of the measurement error, both
magnitudes are hard to estimate, and for the reasons discussed in the next section,
the individual data are likely to be very noisy. The upper part of the table shows
that means and standard deviations of consumption and income are of similar size,
so that with 730 households, the standard errors of the estimates of the mean levels
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Table 1.2. Consumption and income for panel households, Céte d’Ivoire,
1985-86

(thousands of CFAs per month)
Standard Interquar-

Mean deviation Median tile range
Levels
Consumption, 1985 1,561 1,513 1,132 1,344
Consumption, 1986 1,455 1,236 1,070 1,090
Income, 1985 1,238 1,464 780 1,137
Income, 1986 1,332 1,525 871 1,052
Differences 198685
Consumption -106 987 -17 679
Income 94 1,128 92 723

Notes: The figures shown are for total consumption and disposable income, both including imputed
rental values of housing and durable goods. Data from 730 panel households.

Source: Author’s and World Bank calculations using the Cdte d’Ivoire Living Standards Surveys,
1985-86.

are about 4 percent (1//(730) = 0.04) of the means. The changes in the bottom
two rows have much smaller means than do the levels, and although the standard
deviations are also smaller—the correlation coefficients between the years are 0.76
for consumption and 0.72 for income—the standard errors of the estimates of mean
change are now relatively much larger. The correlation between the variables is
also affected by the differencing. In the micro data, the levels of consumption and
income are strongly correlated in both years, 0.81 in 1985 and 0.78 in 1986, but the
correlation is only 0.46 for the first differences. There is, of course, nothing in these
figures that proves that measurement error is in fact present, let alone that it is
determining the outcomes. As we shall see in Chapter 6, there is no difficulty in
accounting for the results in Table 1.2 even under the implausible assumption that
consumption and income are perfectly measured. However, the phenomena that we
observe here are typical of what happens when measurement error is present and
important.

1.2 The content and quality of survey data

One of the main reasons for collecting household survey data is the measurement
and understanding of living standards. At the least, such measurement requires data
on consumption, income, household size, and prices. For broader concepts of living
standards, we also want information on health, nutrition, and life expectancy, and
on levels of education, literacy, and housing. Moving from measurement to model-
ing extends the scope a good deal wider. To understand consumption, we need to
know about income and assets, and about their determinants, saving behavior, in-
heritances, education, and the opportunities for working in the labor market, on a
farm, or in small businesses of one kind or another. We also need information
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about public goods, such as schools and hospitals, and on individuals’ access to
them. In the past, different types of data often have been collected by different
kinds of surveys. Budget surveys collected data on consumption and its compo-
nents; income and employment surveys have collected data on sources of income,
on occupations, and on unemployment; fertility surveys have collected data on
children ever born, contraceptive practices, and attitudes towards fertility; and nu-
tritional surveys have collected data on how much food people consume, how it is
prepared and eaten, and its calorie, protein, and nutrient content. The Living Stand-
ards Surveys, described in Section 1.3, collect data on almost all of these topics
from the same households in a single survey, sacrificing sample size for an inte-
grated treatment of a relatively small number of households. This section is con-
cerned with data quality issues that arise more or less independently whether we
are dealing with multipurpose or more focussed surveys. Again, I make no attempt
to be comprehensive; this section is not a list of what does or ought to appear in the
ideal survey. My aim is rather to introduce a number of definitional and measure-
ment issues that will recur throughout the book when using the data, and of which
it is necessary to be aware in order to analyze them appropriately.

Individuals and households

The standard apparatus of welfare economics and welfare measurement concerns
the well-being of individuals. Nevertheless, a good deal of our data have to be
gathered from households, and while in some cases—earnings or hours worked—
data are conceptually and practically available for both individuals and households,
this is not the case for those measures such as consumption that are most immedi-
ately relevant for assessing living standards. Some goods are consumed privately
by each member of the household, but many others are shared, and even for food,
the most important nonshared good in developing countries, information about
each person’s consumption usually cannot be inferred from the data on household
purchases of food that are typically observed. Chapter 4 will take up these ques-
tions in some detail, and review methods that have been proposed for inferring
individual welfare from household-level data, as well as a broader avenue of re-
search that uses household data to draw conclusions about allocations within the
household. A prior question is the definition of the household in the data, why it
is that some people are grouped together and others not. Broadly defined house-
holds, containing servants and distant relatives, will be larger and more likely to
have a membership that responds to changes in the economic environment. While
this will be inconvenient for some purposes, and will certainly make it difficult to
impute living standards, it may still be the unit that is relevant for decisions like
migration or the allocation of work.

There is no uniformity in definitions of the household across different surveys,
although all are concerned with living together and eating together, and sometimes
with the pooling of funds. A range of possibilities is reviewed by Casley and Lury
(1981, pp. 186-88), who point out that different criteria are often in conflict, and
emphasize that household arrangements are often not constant over time. Many of
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the problems are associated with the complex structure of living arrangements in
developing countries, and the fact that households are often production as well as
consumption units so that a definition that is sensible for one may be inappropriate
for the other. When men have several wives, each wife often runs what is effec-
tively a separate household within a larger compound presided over by the hus-
band. Even without polyandry, several generations or the families of siblings may
live in a single compound, sometimes eating together and sometimes not, and with
the group breaking up and reforming in response to economic conditions. In some
countries, there are lineages to which groups of households belong, and the head
of the lineage may have power to command labor, to order migration, to tax and
reward individuals, and to control communal assets. Even so, members of the
lineage will typically live in separate households, which will nevertheless not be
the appropriate units for the analysis of at least some decisions.

An example of the consequences of alternative definitions comes from Thai-
land, where compound living arrangements are common. The National Statistical
Office changed its survey practice between the 1975-76 and 1981 surveys, and
now counts subunits as separate households. Between the two surveys, average
household size fell from 5.5 persons to 4.5 persons, and at least some of the differ-
ence can be attributed to the change in procedure. A decision to separate previously
pooled households should not affect estimates of average consumption or income
per head, but will increase measures of inequality, since the previous single esti-
mate for the pooled household is replaced by multiple estimates for each of the sub-
households, estimates that are not necessarily the same. Splitting households has
the same effect on the distribution of income or consumption as an increase in dis-
persion with no change in mean, and so must increase measures of inequality (see
Kanbur and Haddad 1987 and Chapter 3 below).

Reporting periods

‘When households are asked to report their income or consumption, a choice has to
be made about the reference or reporting period. As with optimal sample design,
the ideal reporting period depends on the purpose of the survey. For example, if the
object of the exercise is to estimate average consumption over a year, one extreme
is to approach a sample of households on January 1 and ask each to recall expendi-
tures for the last year. The other extreme is to divide the sample over the days of
the year, and to ask each to report consumption for the previous day. The first
method would yield a good picture of each household’s consumption, but runs the
risk of measurement error because people cannot recall many purchases long after
they have been made. The second method is likely to be more economical, because
the survey effort is spread over the year, and will give a good estimate of mean
consumption over all households. However, unless each household is visited re-
peatedly, the survey will yield estimates of individual expenditures that, while ac-
curate on average, are only weakly related to the mean or normal expenditures that
are appropriate measures of individual standards of living. Nor are short recall peri-
ods immune to recall errors, such as “boundary” or “start-up” bias whereby respon-
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dents report events that occurred just before the beginning of the reporting period,
in an effort to be helpful and to ensure that the enumerator does not miss “relevant”
events.

Scott and Amenuvegbe (1990) cite a number of studies showing that reported
rates of consumption diminish with the length of the recall period, and their own
experiments with households from the Ghanaian Living Standards Survey showed
that for 13 frequently purchased items, reported expenditures fell at an average of
2.9 percent for every day added to the recall period. They found no evidence of
start-up bias; rather their results confirm that recall deteriorates with time, even
over a matter of days. If these conclusions are more generally valid, recall periods
of even two weeks—as is often the case—will result in downward-biased estimates
of consumption.

Even in the absence of reporting errors, so that sample means are unaffected by
the choice of recall period, different designs applied to the same underlying popu-
lation will give different estimates of inequality and of poverty. Many people
receive no income on any given day, and many (albeit fewer) will spend nothing
on any given day, but neither fact is a real indication that the individual is truly
poor, nor that differences between individuals on a given day are indicative of the
true extent of inequality. In practice, most surveys adopt sensible designs that
tradeoff potential recall bias from long reporting periods against potential variance
from short periods. For consumption, frequently purchased items like food have a
recall period of between a week and a month, while larger or rarer items, like dur-
able goods, are asked about on an annual recall basis. Even when the recall period
is a day, households are revisited every day or two or, when practical, are asked to
keep diaries for one or two weeks. Aggregate annual consumption can then be esti-
mated for each household by multiplying monthly food expenditures by twelve and
adding the durable and other items. Such a calculation will typically give a useful
indication of household consumption, and the average over the households in the
survey is likely to be a good estimate of average household consumption in the
population.

However, good estimates of means do not imply good estimates of dispersion.
For any given household, expenditures will vary from one reporting period to an-
other, so that even in a “survey” that repeatedly interviewed the same household
once a week for a year and used the weekly reports to calculate 52 annual esti-
mates, not all would be the same. The measured dispersion of annualized expendi-
tures will contain both intrahousehold and interhousehold components, the former
from the within-year dispersion for each household, and the latter from the genuine
inequality across households in annual expenditure. Since it is the latter in which
we are usually interested, the use of reporting periods shorter than a year will over-
estimate dispersion. Some of the intrahousehold variation is seasonal, and seasonal
patterns can be estimated from the data and used to make corrections. The same is
not true for the random nonseasonal variation across weeks or months for each
household. Scott (1992) makes calculations for this case and gives a plausible ex-
ample in which the standard deviation of annual expenditures is overestimated by
36 percent from a survey that gathers consumption data on a monthly basis.
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In several of the Living Standards Surveys (LSS), respondents were asked to
report expenditures for more than one period. The standard LSS format calls for two
visits, roughly two weeks apart, and the interviewer asks how much was spent on
each food item “since my last visit.” Respondents are also asked in how many
months of each year they buy the item, and what they “normally” spend in each of
those months, For some nonfoods, households report expenditures both “since the
last visit” as well as “in the last year.” Results of comparisons are reported in
Grosh, Zhao, and Jeancard (1995) for the Living Standards Surveys of Ghana and
Jamaica, and in Deaton and Edmonds (1996) for Céte d’Ivoire, Pakistan, and Viet
Nam. Estimates of mean expenditure tend to be larger for shorter reporting periods,
which is consistent both with recall failure over time, which would bias down the
long-period data, but also with boundary effects, which would bias up the short-
period data. It is unclear which (or if either) measure is correct. For total expendi-
tures, the ratio of means (short-to-long) are 1.04, 1.08, 1.10, and 1.01 for Cbte
d’Ivoire, Ghana, Jamaica, and Viet Nam, respectively. There is also evidence, from
Céte d’Ivoire and Pakistan, but not from Viet Nam, that when the time between
visits is longer, reported expenditures do not increase proportionately, so that the
rate of expenditure is lower the longer the recall period; once again, this is consis-
tent with progressive amnesia about purchases. Measures of dispersion are also
somewhat higher for shorter reporting periods; in Céte d’Ivoire for example, the
standard deviations of monthly per capita consumption are 368 and 356 thousand
CFAs for short and long periods, respectively. In general, “normal” expenditures on
food are usually not very different from those reported “since the last visit,” and
while the discrepancies in both means and variances are larger for nonfoods, they
account for a smaller share of the total budget. Given the other uncertainties associ-
ated with defining and measuring consumption—see the next subsection—we
should perhaps not be too concerned with the discrepancies that are attributable to
differences in reporting periods, at least over the practical range. Of course, such
a conclusion does not provide reassurance that the measures of inequality and
poverty from the surveys correspond to the measures of inequality and poverty that
we should like.

Measuring consumption

If our main concern is to measure living standards, we are often more interested in
estimating total consumption that its components. However, some individual items
of expenditure are of interest in their own right because their consumption is of
direct interest—nhealth care, education, food, especially nutrient-rich foods such as
milk—or because the items are subsidized or taxed at differential rates, so that the
pattern of demand has implications for public expenditures and revenues. We also
need a separate accounting of public goods and their contribution to welfare, and
we need to separate expenditures on nondurables from durables, since the latter do
not contribute to living standards in the same way as the former. Forecasts of de-
mand patterns are often useful, and are essential for the sort of planning exercises
that were once a routine part of development policy. The rate at which consumption
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switches from food to manufactures and services, and, in poorer economies, the
rate at which a largely vegetarian and cereal-based diet is supplemented with meat,
exert a powerful influence on the fraction of the population employed in agriculture
and on the type and intensity of agricultural production.

Even when the survey is concerned only with the measurement of living stan-
dards, questions about total expenditure are unlikely to provoke accurate responses,
and it is necessary to disaggregate to some extent in order to obtain satisfactory
estimates. There are often other sources of information about components of con-
sumption—crop surveys and trade data about cereals, for example—so that assess-
ing the reliability of the survey typically requires disaggregation. Traditional
household surveys in developing countries have surveyed consumption in great
detail, and the Indian Nss, the Indonesian Survei Sosial Ekonomi Nasional (SUSE-
NAS), and many other surveys collect information on around 200 separate food
items alone, both in physical quantity and monetary units, together with several
dozen more nonfood items. The World Bank’s Living Standard Surveys have usu-
ally been less detailed, on the grounds that the detail and the data on physical quan-
tities are necessary only for calculating calorie and nutrient intake, but not to obtain
accurate estimates of total consumption and living standards.

There is mixed evidence on whether it is possible to obtain accurate estimates
of total consumption from a small number of expenditure questions. A test survey
in Indonesia (World Bank 1992, Appendix 4.2) subjected 8,000 households to both
short and long questionnaires. In the former, the number of food items was reduced
from 218 to 15, and the number of nonfood items from 102 to 8. Total measured
food expenditures differed little between the questionnaires, either in mean or
distribution, although the long questionnaire yielded about 15 percent more non-
food expenditure. But these encouraging results have not been replicated else-
where. A similar experiment in El Salvador with 72 versus 18 food and 25 versus
6 nonfood items gave ratios (long-to-short) of 1.27 for food and 1.40 overall (Jol-
liffe and Scott 1995). A 1994 experiment in Jamaica produced similar results, with
a long-to-short ratio of 1.26 for both food and nonfood (Statistical Institute and
Planning Institute of Jamaica 1996, Appendix III). Although the shorter question-
naires can sometimes lead to dramatic reductions in survey costs and times —in
Indonesia from eighty minutes to ten—it seems that such savings come at a cost in
terms of accuracy.

The quality of consumption data has been subject to a good deal of debate.
Minhas (1988) and Minhas and Kansal (1989) have compared various item totals
from the Indian NSS consumption surveys with the independently obtained pro-
duction-based totals of the amounts of various foods available for human consump-
tion. While the results vary somewhat from food to food, and while it is important
not to treat the production figures as necessarily correct, there is typically very
close agreement between the two sets of estimates. The survey figures are, if any-
thing, somewhat higher, for example by 4 percent for cereals in 1983. In Britain,
the annual FES underestimates total consumption, although as we have already seen,
some of the discrepancy is due to the downward bias in alcohol and tobacco expen-
ditures, a part of which reflects the coverage of the survey. In the United States, the
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Consumer Expenditure Survey also appears generally to underestimate consump-
tion; again alcohol and tobacco are major offenders, underestimating the national
accounts figures by a half and a third, respectively, but there are problems with
other categories, and even food expenditures were some 15 percent lower than the
estimates from the national income and product accounts (NIPA), with the discrep-
ancy growing over time (see Gieseman 1987).

There are peculiar sampling problems associated with variables whose distribu-
tion in the population is extremely positively skewed. Assets—including land—are
the most obvious example, but the same is true to a lesser extent of income, con-
sumption, and many of its components. Consider the most extreme case, when one
household owns all of the assets in the economy. Then surveys that do not include
this household will yield an estimate of mean assets of zero, while those that do
will yield an overestimate of the mean, by the ratio of population to sample size.
Although the estimate of mean assets over all samples is unbiased, it will usually
be zero. More generally, sample means will inherit some of the skewness of the
distribution in the population, so that the modal survey estimate will be less than
the population mean.

There are two other issues that tend to compromise the quality of consumption
data in developing countries. Both are associated with the fact that most agricul-
tural households are producers as well as consumers, and both reflect the difficulty
of disentangling production and consumption accounts for people who have no
reason to make the distinction. The first problem, which will arise again in Chapter
4, is that wealthy households hire workers, both domestic servants and agricultural
workers, and in many cases supply them with food, explicitly or implicitly as part
of their wages. Food expenditures for wealthy households will therefore usually in-
clude expenditures for items that are not consumed by the immediate family and
for large agricultural households the discrepancy can be large.

The second problem relates to consumption of home-produced items, typically
food grown or raised on the farm or in kitchen gardens. Such items, often referred
to as autoconsommation, are properly recorded as both income and consumption,
but are often difficult to value, especially in economies—as in much of West Africa
—where some markets are not well developed, and where home production and
hunting may account for a large share—perhaps more than a half—of total con-
sumption, In cases where prices are available, and where the items being consumed
are similar to those that are sold nearby, imputation is not difficult, although there
are often difficulties over the choice between buying and seeling prices. Where
there are differences in quality, or where the item is rarely sold, some price must
be imputed, and the choice is nearly always difficult. In one extreme example, a
comprehensive survey in West Africa went so far as to collect data on the amount
of water that people fetched from local rivers and ponds and used for cooking and
washing. Regarding this as an item of autoconsommation, its price was calculated
using an algorithm applied to all such items, which was to select the price for a
similar traded item in the geographically nearest market. In this case, river water
was effectively valued at the current price of L’Eau Perrier in the nearest city, thus
endowing rural households with immense (but alas illusory) riches.
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Quite apart from being aware of the general measurement error that is likely to
be introduced when imputations are responsible for a large fraction of total con-
sumption, it is also important to recognize that such errors will be common to mea-
sures of both income and consumption, since imputations are added to both. As a
result, if we are interested in the relationship between consumption and income, the
same measurement error will be present in both dependent and independent vari-
ables, so that there is a spurious correlation between the two, something that needs
to be taken into account in any analysis.

Measuring income

All of the difficulties of measuring consumption—imputations, recall bias, season-
ality, long questionnaires—apply with greater force to the measurement of income,
and a host of additional issues arise. Income is often a more sensitive topic than is
consumption, especially since the latter is more obvious to friends and neighbors
than the former. Accurate estimates of income also require knowledge of assets and
their returns, a topic that is always likely to be difficult, and where respondents
often have incentives to understate.

Perhaps most important of all is the fact that for the large number of households
that are involved in agriculture or in family business, personal and business incom-
ings and outgoings are likely to be confused. Such households do not need the
concept of income, so that respondents will not know what is required when asked
about profits from farms or own enterprises. The only way to obtain such measures
is by imposing an accounting framework on the data, and painstakingly con-
structing estimates from myriad responses to questions about the specific com-
ponents that contribute to the total. Even in the industrialized countries, the mea-
surement of self-employed income is notoriously inaccurate; for example, Coder
(1991) shows that estimates of nonfarm self-employment income from the March
round of the Current Population Survey (CPS) in the United States are 21 percent
lower than independent estimates from fiscal sources, while the estimates for farm
self-employment income are 66 percent lower. Yet the ratio of the CPS estimate to
the tax estimate for wages and salaries is 99.4 percent. A farmer in a developing
country (or in the United States for that matter) who buys seeds and food in the
same market on the same day has no reason to know that, when computing income,
it is only expenditure on the former that should be deducted from his receipts. A
street trader selling soft drinks may report that his profits are zero, when the fact
is that at the end of each day, after buying food and giving some money to his wife
and children, he has just enough left to finance the next day’s inventory. Those
close to subsistence, whose outgoings are close to incomings, are quite likely to
report that income is zero. To get better estimates, the survey must collect detailed
data on all transactions, purchases of inputs, sales of outputs, and asset transactions,
and do so for the whole range of economic activities for wage earners as well as the
self-employed. This is an enormous task, especially in countries where households
are large and complex and where people are involved in a wide range of income-
generating activities.
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The practical and conceptual difficulties of collecting good income data are
severe enough to raise doubts about the value of trying; the costs are large and the
data may not always be of great value once collected. Apart from some early
experiments, the Indian NSS has not attempted to collect income data in their con-
sumer expenditure surveys. Very few households refuse to cooperate with the con-
sumption surveys, and, as we have seen, their estimates of aggregate consumption
cross-check with independent estimates. The belief is that the attempt to collect in-
come could compromise this success, and would lead, not only to poor income
figures, but also to a deterioration in the quality of the estimates of consumption.
That said, the World Bank’s experience with the various Living Standards Surveys
as well as that of RAND with the Malaysian and Indonesian Family Life Surveys
has been that it is possible to collect data on income components—accurately or in- ’
accurately—without any effect on response rates. On the conceptual issues, anyone
who has made the calculations necessary to assemble a household income estimate
from a detailed integrated survey, such as the Living Standards Survey, with the
hundreds of lines of computer code, with the arbitrary imputations, and with allow-
ances for depreciation and appreciation of capital goods and livestock, will inevit-
ably develop a lively skepticism about the behavioral relevance of such totals, even
if the calculation is useful as a rough measure of the flow of resources into the
household.

Survey-based estimates of income are often substantially less than survey-based
estimates of consumption, even when national income estimates show that house-
holds as a whole are saving substantial fractions of their incomes, and even in in-
dustrialized countries where self-employment is less important and income easier
to measure. Although there are often ‘good reasons to doubt the absolute accuracy
of the national income figures, the fact that surveys repeatedly show large fractions
of poor people dissaving, and apparently doing so consistently, strongly suggests
that the surveys underestimate saving. What little we know about the accuracy of
the consumption estimates indicates that consumption is more likely to be under-
estimated than overestimated, so that it seems likely that most survey estimates of
income are too low. Some of the underestimation may come from positive skew-
ness in the distribution of income, so that survey estimates of the mean will also be
skewed with a mode below the mean (see p. 28 above.) But underestimation of
individual incomes is almost certainly important too. While this conclusion is far
from well documented as a general characteristic of surveys in developing count-
ries, many statisticians find it plausible, given the conceptual and practical difficul-
ties of measuring income. Discovering more about the discrepancies between
national income and survey-based estimates of saving should be given high priority
in future research. Most theories of saving relate to individual or family behavior,
and yet much of the concern about saving, growth, and macroeconomic perfor-
mance relates to national aggregates. If household data cannot be matched to
national data, it is very difficult to make progress in understanding saving behavior.

Table 1.3 presents data on income, expenditure, and saving from the Socio-
economic Survey of the Whole Kingdom of Thailand in 1986. The left-hand panel
groups the households in the survey according to a comprehensive definition of
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Table 1.3. Household saving by income and expenditure deciles,

Thailand, 1986
(baht per month)
By income decile By expenditure decile
Decile Income Saving Decile Income Saving
1 690 -683 1 950 49
2 1,096 -737 2 1,409 -6
3 1,396 -741 3 1,768 -23
4 1,724 =775 4 2,119 -73
5 2,102 -746 5 2,523 -145
6 2,589 -593 6 3,005 -221
7 3,231 -503 7 3,649 -103
8 4,205 -358 8 4,579 ~-379
9 5,900 82 9 6,119 -308
10 13,176 2,761 10 12,283 -1079
All 3,612 -229 All 3,841 -229

Notes: Figures are averages over all households in each decile; there are 10,918 households in the survey.
In the left-hand panel, households are grouped by deciles of total income, in the right-hand panel, by
deciles of total expenditure.

Source: Author’s calculations using the Social Survey of the Whole Kingdom of Thailand, 1986 (see
Example 1.1 in the Code Appendix).

household total income, and shows the average saving figures for households in
each decile group. According to these estimates, households dissave in total, while
the National Income Accounts for Thailand (U.N. 1991) estimate that household
saving was 12.2 percent of household income in 1986. Moreover, low-income
households dissave more than higher-income households, and the bottom nine dec-
iles each show negative saving on average. Although such behavior is not univer-
sal—see, for example, the results for Taiwan (China) in Chapter 6—it is common
in surveys in developing countries (see, for example, Visaria and Pal 1980). Such
evidence makes it easy to see why early observers of economic development
inferred that saving was confined to rich households. However, the right-hand side
of the table shows that such an explanation is not correct, at least not in any simple
way. Households that are well-off in terms of income are also likely to be well-off
in terms of consumption, so that if saving rates are higher for richer households,
saving should also rise across consumption deciles. But the date show that the
largest amount of dissaving is done by households in the top expenditure decile.
These findings probably owe a good deal to measurement error. If income and
consumption are independently measured, at least to some extent, households who
overstate their incomes will also, on average, overstate their savings, while house-
holds who overstate their consumption will correspondingly understate their sav-
ing. The top deciles of income contain a large fraction of households with over-
stated incomes and will thus show the highest saving rates, with the opposite effect
for consumption. Of course, exactly the same story can be told with “transitory in-
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come” and “transitory consumption” replacing “measurement error” in income and
consumption, respectively, and it is this analogy that lies at the heart of Friedman’s
(1957) permanent-income theory of consumption. Indeed, since Friedman defined
transitory and permanent income as if they were measurement error and the unob-
served “true” income, respectively, an explanation in terms of measurement error
can always be recast as a permanent-income story. Even so, the results in Table 1.3
are consistent with the importance of measurement error in income, as is the dis-
crepancy between the national accounts and survey results.

Paxson (1992) has argued that the presence of inflation also tends to overstate
consumption relative to income given that surveys usually have different reference
(reporting) periods for consumption and income. As we have seen, the reference
period for consumption varies from item to item, but is often a week or two weeks
for food—which may account for two-thirds or more of the budget—while the
importance of seasonality in incomes means that reference periods for income are
usually a year. Consumption is then denominated in more recent, higher prices than
is income, imparting a downward bias to measures of saving. Since inflation in
Thailand in 1986 was only 2 percent per annum, the appropriate correction makes
little difference to the figures in Table 1.3, though Paxson shows that the correc-
tions for Thailand in the previous 1980-81 survey, when inflation was 16 percent,
increase saving by around 7 percent of income.

1.3 The Living Standards Surveys

The Living Standards Measurement Study (LSMS) was begun in the World Bank
in 1979 in the last months of the McNamara presidency. The original aim was to
develop the World Bank’s ability to monitor levels of living, poverty, and inequa-
lity in developing countries, to allow more accurate statements about the number
of people in poverty around the world, and to permit more useful comparisons
between countries. In conjunction with host statistical offices, the project fielded
its first surveys in Peru and in Céte d’Ivoire in 1985-86. Since then, there have
been several dozen LsSMS or LsMs-related surveys. These surveys are different from
the typical earlier survey in developing countries, and the experience with them has
been influential in shaping current survey practice. It is therefore useful to devote
some space to a description of their special features, and to attempt some assess-
ment of what has been learned from the LSMS experience.

A brief history

In the late 1970s, it became clear that it was impossible for the World Bank—or for
anyone else—to make well-supported statements about world poverty, especially
statements that required internationally comparable data. There was no firm basis
assessing such fundamental topics as the extent of poverty in the world, which
countries were the poorest, or whether the inequality within and between nations
was expanding or contracting. Even within countries, the simplest statements about
distributional outcomes were difficult. One particularly important case was that of
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Brazil, where there was dispute as to the extent that poor people had benefited from
the “economic miracle” of the 1960s. According to an analysis by Fields (1977),
the poor had done much better than the nonpoor, but Ahluwalia and others (1980)
showed that neither this result, nor any other useful conclusion could be supported
by the available evidence. While national income data were not above criticism,
then as now, statistical offices worldwide were generating useful, credible, and
comparable data on average economic performance, but there were no correspond-
ing data on distribution. At the same time, writers in the “basic needs” literature,
for example Streeten and others (1981), were arguing for a reevaluation of the rela-
tionship between economic growth and poverty. While there was no lack of econo-
mists on either side of the issue, the data did not exist to settle what was largely a
factual question. Even in India, the motherland of household surveys, evidence on
poverty trends was controversial and hotly debated (see Bardhan 1971, Lal 1976,
Ahluwalia 1978, and Griffin and Ghose 1979). Because data on consumer expendi-
tures were collected only every five years, and because rural poverty in India is so
sensitive to fluctuations in the harvest, it was impossible before the mid-1980s to
separate trend from fluctuations, and be sure from the NSS data that poverty rates
were indeed falling (see Ahluwalia 1985).

The original aim of the LSMS project was to remedy this situation, by collecting
—or at least by helping others to collect—comparable survey data across countries,
and so allowing comparisons of poverty and inequality over time and space. In ret-
rospect, it is unclear how such an objective could have been achieved except by the
establishment of international standards for surveys that were comparable, for ex-
ample, to the U.N.’s system of national accounts (SNA); even then, it would have
been much more difficult to establish a common set of protocols for estimating dis-
persion than for estimating means. However, by the time that the first full LSMS
survey was ready for implementation in Cote d’Ivoire in 1983, attention had shifted
from measurement towards a more ambitious program of gathering data to be used
to understand the processes determining welfare at the household level. Although
either set of objectives would have required a multipurpose household income and
expenditure survey of some kind, the new aims were best served by an intensive,
integrated survey in which each household was asked about every aspect of its
economic and domestic activity. While the expense of such a design necessitated
a smaller sample size, as well as less detail on individual topics than had been the
case in traditional single-purpose surveys, such as agricultural or consumption
surveys, these were accepted as the costs of the opportunity to model household
behavior as a whole.

The shift in emphasis owed much to “Chicago” views of household and farm
behavior, particularly Schultz’s arguments that households respond rationally and
purposively to prices and incentives and to the development by Becker of the “new
household economics.” These views first influenced survey practice in RAND’s
1976-77 Malaysian Family Life Survey, the experience of which helped shape the
first Living Standards Surveys. The latter have in turn influenced later RAND sur-
veys, particularly the 1988-89 second Malaysian Family Life Survey and the 1993
Indonesian Family Life Survey. Behind these designs rests the belief that policy



34 THE ANALYSIS OF HOUSEHOLD SURVEYS

advances should rest on an enhanced empirical understanding of how such house-
holds respond to their economic and physical environments, and on the role of
government policy in shaping those environments. Although such a perspective
was different from the original one, the practical consequences were confined to
the tradeoff between sample size and the amount of information from each indivi-
dual. Nothing in the new design would prevent the data being used for its original
purposes and indeed, in recent years, one of the main uses of LSMS surveys has
once again been for the measurement of poverty. ’

Another theme in the original design was an emphasis on collecting at least
some panel data. As shown above, a panel design is often an efficient way to col-
lect information on changes over time, which was one of the aims of the LSMS
project. Panel data also seemed to be well suited to the documentation of the losses
and gains from economic development, or from structural adjustment. In the late
1970s and early 1980s, there was also a great deal of interest in academic circles
in the econometric possibilities associated with panel data, so that the collection of
such data, which was rare in developing countries, was an exciting and promising
new endeavor.

The Ivorian Living Standards Survey collected data in 1985, 1986, 1987, and
1988, with an intended sample size of 1,600 households. There were three panels
of 800 households:each, which ran for two years each in 1985-86, 1986-87, and
1987-88; no household was retained for longer than two years, but in principle, all
households would be interviewed at two visits a year apart, except for half of those
in the first and last years. A larger (5,120-household) single-year survey was car-
ried out in Peru in 1985-86, followed by a two-year panel survey with 3,200
households in Ghana in 1987-88 and 1988-89. Since then there have been LsMs
or LSMS-related surveys in Mauritania (1988), Morocco (1990-91), Pakistan
(1991), Venezuela (1991-93), Jamaica (1988 to date), Bolivia (1989 to date), the
Kagera region of Tanzania (1991-93), Peru (1990, 1991, and 1994), Russia
(1991-92), South Africa (1993), Viet Nam (1993), Kyrgyz Republic (1993), Nica-
ragua (1993), Guyana (1993), Ecuador (1994), Romania (1994-95), Bulgaria
(1995), and the Hebie and Liaoning provinces of China (1995). At the time of writ-
ing, LSMS surveys are in the design or implementation stage for Brazil, Kazakhstan,
Mongolia, Nepal, Paraguay, Tunisia, Turkmenistan, and Uzbekistan. These surveys
are far from identical, although all have common design elements as described
below. But the surveys have been adapted to different needs in different countries,
so that, for example, the Jamaican survey is a compromise between a full LSMS
survey and a previously existing and long-running labor force survey, while the
survey in Kagera is concerned with monitoring economic responses to the AIDS
epidemic. For further details, see Grosh and Glewwe (1995), from which the infor-
mation in this paragraph is culled, or the LsMS homepage on the World Wide Web.

Design features of LSMS surveys

The design and implementation of the Ivorian survey is described in Ainsworth and
Muiioz (1986) and their description remains a good account of a prototypical LSMS
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survey. The implementation manual by Grosh and Mufioz (1995) provides a fuller
and more recent account, incorporating the lessons of past experience, and is
essential reading for anyone designing an LSMS or LSMS-related survey.

There are three separate questionnaires in the “standard” LSMS survey; a house-
hold questionnaire, a community questionnaire, and a price questionnaire. The first
is long by previous standards, and comprises (up to) seventeen sections or modules,
some of which are technical, such as the section that identifies suitable respondents
for subsequent modules, or the section that links individuals across years for panel
households. Most modules are substantive and cover a long list of topics: house-
hold composition, housing and its characteristics, education, health, economic acti-
vities and time use, migration, agricultural and pastoral activities, nonfarm self-
employment activities, food expenditures, durable-goods expenditures and inven-
tories, fertility, other sources of income including remittances, saving, assets, and
credit markets, and anthropometric measurement of household members. The com-
munity questionnaire, which is sometimes used only in rural areas, gathers data
from knowledgeable local people (such as chiefs, village headmen or elders,
medical personnel, or teachers) about local demographics (population, ethnicity,
religion, and migration), and about local economic and service infrastructure, such
as transportation, marketing, extension services, primary and secondary schools,
and health and hospital facilities. The price questionnaire, administered country
wide, was collected by enumerators visiting local markets and observing prices,
mostly of foods.

The surveys are designed to produce high-quality data, and to deliver the results
quickly; to this end, use is made of microcomputers both for the design of ques-
tionnaires and for data entry and editing. The use of computer software to turn
questions into a printed questionnaire, with appropriate pagination and skip pat-
terns, not only cuts down on error, but also permits rapid redesign and reprinting
after field tests. Many responses are precoded on the questionnaire, so that there is
no coding by keyboard operators at the data entry stage. In each round, households
are visited twice with an interval of two weeks, and roughly half the questionnaire
administered at each visit. Between the two visits, the first data are entered into the
computers and are automatically subject to editing and consistency checks by the
software as they are entered. Such procedures not only minimize data entry errors,
but permit the enumerators to correct some response errors during the second visit.
They also mean that much less time is required to edit the data after the survey, so
that instead of the several years that are common in some countries, the preliminary
data and tabulations are available in three to six months after the completion of the
fieldwork.

What have we learned?

It is too early for any final verdict on the contribution of LSMS surveys to data col-
lection in developing countries in general, let alone to their ultimate aim, of im-
proving policymaking and the understanding of economic behavior in developing
countries. At the time of writing it is only eleven years since the first household



36 THE ANALYSIS OF HOUSEHOLD SURVEYS

was interviewed. New data are continuously becoming available and new uses in
policy and analysis are being developed. However, the LSMS surveys have taught
us a great deal that we did not know in 1980, and the experience has certainly
changed the way household data are—or at least ought to be—collected in develop-
ing countries.

The experiments with microcomputers have been successful. Computer-assisted
questionnaire design works and the procedures for precoding, software-controlled
data entry, and checking enhance data quality and speed delivery. Although local
conditions typically preclude using computers during interviews, so that there are
limits on the use of the computer-aided interview techniques that are rapidly devel-
oping in the United States and elsewhere, it is feasible to install microcomputers
at local survey headquarters, and these are used to enter and check the data within
a few days of capture. Given the cost and robustness of microcomputers, there is
every reason for their use to be universal in household survey practice around the
world. There is no good reason—except for entrenched bureaucracy and vested
interests—why survey results and tabulations should be delayed until years after
fieldwork is completed.

We also know now that long and complex household questionnaires are prac-
tical. Because there are two visits separated by two weeks, and because different
members of the household are interviewed for different parts of the questionnaire,
no one person is subjected to an impossibly long interview. At the beginning of the
LSMS project, opinions were sharply divided on the feasibility of long question-
naires, with experienced surveyors arguing both for and against. In practice, and
although each round of the LSMS survey was two to three hours long, depending on
the number of household members, there were no refusals based on length, and no
appearance of declining cooperation as the interviews progressed. Of course, at any
given cost, there is a tradeoff between length of the questionnaires and the number
of households that can be covered in the sample. The fact that LSMS surveys favor
the former has meant that survey results are less useful than traditional, larger
surveys for disaggregated measurement of living standards, by region, occupation,
or other target group. As a result, and as interest has turned back to the use of sur-
vey data to assess poverty, the later surveys have tended to be simpler and to have
larger sample sizes, and there has been some reversion towards the original aims
of measurement rather than analysis.

While it is difficult to assess data quality without some sort of controlled experi-
ment, the feedback from users has usually been positive, and there is no evidence
to suggest that the timeliness of the data has been bought at the price of lower
quality compared with data sets where the cleaning and editing process has taken
a great deal longer. To be sure, there are difficulties with the LsMs data, but these
appear to be the sort of problems that can and do arise in any survey, irrespective
of design. The community and price questionnaires are elements that are more
experimental in the LsMs design and there currently appears to be little hard evi-
dence on their usefulness. The community questionnaire can be regarded as an
efficient way of collecting information that could, in principle, have been collected
from individual households. The data on the provision of services has been routine-



THE DESIGN AND CONTENT OF HOUSEHOLD SURVEYS 37

ly combined with the household data in various analyses, for example of the deter-
minants of access to education and health facilities. One difficulty lies in the con-
cept of a community. The simplest idea is of a village, whose inhabitants share
common health, educational, and other facilities, and who buy and sell goods in the
same markets. But communities may not conform to this model; people may be-
long to different “communities” for different purposes, and in some parts of the
world, there are no well-defined villages at all. Nor is there any guarantee that the
primary sampling units or clusters in the survey necessarily correspond to units that
have any unified social or administrative structure. In consequence, even when the
community questionnaire yields data on schools, clinics, or transportation, we do
not always have a clear delineation of the population served by those facilities, or
on its relationship to the survey households in the cluster.

Information about prices is not easy to collect. Enumerators are given a list of
well-defined items, and are required to price at three different sites in local markets.
For obvious reasons, an enumerator is not given money to make actual purchases,
but instead approaches the seller, explains that he or she is conducting a survey
(which has nothing to do with taxes or law enforcement), and asks the price of an
item. There is no haggling, but the enumerator is supplied with scales and asks the
seller’s permission to weigh the potential purchase. While it is easy to see the
problems that might accompany such a procedure, it is harder to devise alterna-
tives. “Market price” is a concept that is a good deal more complex in an African
market than in an American supermarket or an economics textbook. Different
people pay different amounts, there are quantity discounts, and many foods are
presented for sale in discrete bundles (half a dozen yams, or a bunch of carrots)
whose weights or volumes may vary even at the same price. There are also wide
geographical differences in the range of items in local markets, so that it is difficult
to collect the sort of price data that will permit reliable calculation of the cost-of-
living indexes required to compare real living standards across different areas of
the country, and between rural and urban households. Even so, in those LSMS sur-
veys (for example Pakistan and Viet Nam) where consumers reported both expen-
ditures and physical quantities, the unit values from these reports are well corre-
lated across space with the prices from the price questionnaire (see Deaton and
Edmonds 1996). An alternative procedure is recommended by Grootaert (1993)
who suggests collecting prices using the standard price surveys that usually exist
to gather cost-of-living data, although such a solution sacrifices the exact match
between survey households and the prices that they face.

The experience of collecting panel data has been somewhat mixed. The original
emphasis has been muted over time, and few of the recent surveys have been
explicitly designed as panels. While the LSMS surveys should not be judged on their
success (or lack of it) in collecting panel data, the experience has been useful, parti-
cularly given the rarity of such data from developing countries. Some critics had
suggested that it would be difficult to locate many households for the second
annual visit and these worst fears were not realized. Even so, there is a good deal
of migration of household members, and there are occasional refusals, so that
actual panels are smaller than the design. In C6te d’Ivoire, where the design called
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for 800 panel households out of a total sample of 1,600, there were 793 “panel-
designate” households from whom valid data were collected in 1985; 730 of them
(92 percent) provided valid data in 1986. In the second panel in 1986-87, 693 (87
percent) of the 800 designated households provided data, and in 1987-88, there
were 701 (88 percent) out of 800. Since attrition is generally at its worst in the first
year, and since the LSMS surveys make no attempt to follow households that have
moved, these fractions are impressively high, comparing well with the attrition
rates in the PSID.

Perhaps less satisfactory is the occasional difficulty of determining whether two
so-called panel households in two years are in fact the same household. When
panel households could not be located in the second year, replacement households
were selected, and these were not always labeled as clearly as they should have
been. The section of the questionnaire that links panel households and their
members is a great help in this regard, and is a testament to the fact that the design-
ers clearly anticipated the problems that arise with panel households, but there are
cases where examination of this section, and the difficulty of matching individuals,
raises questions about whether what is labeled as a panel household is not in fact
a replacement. The underlying fear is that, in the absence of detailed supervision,
enumerators may too readily substitute new households for the intended panelists,
and that the fact that they have done so may not be easily detectable after the event.
The “linking” section of the questionnaire is extremely important, and has to be a
focus in any satisfactory panel survey. Linking is best done by having a list of the
names of all household members, which can conflict with the usual promises of
anonymity.

There are also questions about the general value of the data obtained from two-
year rolling panels as in the Ghanaian and Ivorian surveys. One issue is measure-
ment error, particularly in income and, to a lesser extent, in consumption. Given
that we want to measure changes in levels of living at the individual level, and
given that in much of Africa economic progress has been slow at best, measured
changes over a single year will be dominated by a combination of measurement
error and the normal fluctuations of agricultural income, neither of which is of
primary interest. It is probably also true that attrition is at its worst between the first
and second year of a panel, so that a two-year design suffers a larger proportional
loss per household year than would a longer panel. Longer panels also offer greater
opportunities for assessing and controlling for measurement error (see, for ex-
ample, Griliches and Hausman 1986 and Pischke 1995).

What would be more useful is one of two things; first, estimates of change over
much longer periods, five or ten years say, and second, estimates of change over
periods when there have been major policy changes, such as those induced by
structural adjustment programs, or clearly defined outside shocks that have affected
living standards. Obtaining either of these can be a matter of good fortune, of
having a survey in place at just the right time, but will be guaranteed only when
surveys are organized on a continuing basis by a permanent local survey organiza-
tion. As I have already noted, it is also sometimes possible to revisit households
from an earlier survey even when there was no original intention of constructing
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a panel. Such revisits can allow long observation periods without having to main-
tain a permanent survey, and can be designed on an ad hoc basis to examine some
event of interest (see Bevan, Collier, and Gunning 1989, who looked at the conse-
quences of booms in coffee prices in Kenya and Tanzania in the mid-1980s, or
Glewwe and Hall 1995, who looked at the effects of macroeconomic shocks in
Peru). Although the Ivorian and Ghanaian surveys were originally intended to be
permanent, data collection has ceased in both. The timing was particularly unfortu-
nate in Cdte d’Ivoire because data collection ceased just before the decline in world
prices forced the government to cut the procurement prices of cocoa and coffee,
which are the major sources of agricultural income in much of the country.
Studying the effects of this policy change, which terminated a thirty-year regime
of approximately constant real prices, could have produced important insights
about policy and welfare but the opportunity was lost. In general, it is unclear that,
except by chance, there are major benefits to be expected from gathering short-term
panel data in slowly growing or stagnant economies.

The usefulness of the LSMS data for policymaking and research is another ques-
tion on which a verdict is premature, although there is certainly a strong demand
by the countries themselves for such surveys. For several of the LSMS countries, the
surveys have replaced an almost total absence of information with at least some
information, and the tabulations are routinely used in policy operations, project
evaluation, and poverty assessment inside the World Bank and in the countries
themselves. The surveys have also produced large amounts of microeconomic data
that are potentially available for the sort of research described in this book. The
LSMS group within the World Bank has also produced an impressive (and impress-
ively long) list of working papers, most of which are concerned with policy-related
empirical analysis of the data. However, there is less evidence that the data are
being used to capacity in the countries from which they originally came.

One of the aims of the LSMS project, from its first inception, was to provide an
easily accessible data base for the analysis of policy on a daily basis. While no one
supposed that cabinet ministers would sit in front of terminals displaying the LSMS
data, there was hope that their assistants and advisors would, and that tabulations
or graphics could be produced in hours, not months or years (or not at all) as is
often the case. Questions about whether food subsidies are reaching their intended
recipients, or who would be hurt by an increase in fertilizer prices, are examples
of the sort of questions that arise regularly among policymakers and their advisors,
and that can be quantified and clarified by survey data (see Chapter 3). Such
distributional analyses are a regular feature of policymaking in the United States
or Britain, for example, but for whatever reason—computing facilities, software,
or personnel— similar analyses are rare in developing countries. Even so, there are
signs of progress. Most notable is the case of Jamaica, where there was an
unusually high degree of (powerful) local interest from the start, and where the
LsSMS data have been used in a wide range of domestic policy exercises, on poverty
assessment, on the effectiveness of food stamps, and on health questions. The data
are even used as part of the standard training in quantitative methods at the
University of the West Indies (Grosh and Glewwe 1995).
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In recent years there has also been a great deal of progress in the archiving of
the data and in making them available to the research community, for example via
the LSMS page on the World Wide Web. While there are real problems of owner-
ship and confidentiality with all household survey data, arrangements can be—and
in an increasing number of cases have been—worked out to give access to the indi-
vidual household records (again see the LsMs homepage for up-to-date infor-
mation). Finally, a note about survey costs. The Implementation Manual (Grosh
and Mufioz 1996, Table 8.1) presents total costs for eight actual surveys. These
vary from $78 per household for a 2,000-household survey in Jamaica to over $700
per household for a 4,480-household survey in Brazil; in several other cases, the
per household cost lies between $150 and $250. Much of the variation is explained
by whether or not vehicles had to be purchased. The high estimates are inflated by
these costs—only a fraction of which are directly attributable to the one-year sur-
vey—but are understated by amount of technical assistance provided by the World
Bank, which is not included in these estimates.

1.4 Descriptive statistics from survey data

One of the first calls on survey data is to calculate descriptive statistics, often for
a survey report containing a standard set of tables. In this section, I discuss some
of the issues that arise in calculating these statistics, and in particular how we make
sure that statistics describe the population rather than the particular sample that is
available for analysis. To do so, we need to know how the sample was designed
and to understand its relationship to the population of interest. Different sample
designs require the data to be processed in different ways to estimate the same
magnitude. I present some useful formulas for calculating the standard error of
estimated means, again taking the sample design into account. These formulas are
useful in themselves, as well as for the descriptive material that appears later in the
book, particularly in Chapter 3 on the measurement of poverty. They also provide
a starting point for the analytic and econometric material in Chapter 2.

Common examples of descriptive statistics are measures of central tendency,
such as means and medians, and of dispersion, such as variances and interpercentile
ranges. Living standards are often measured by the means of income or consump-
tion, inequality by their dispersion, and poverty by the fraction of the population
whose income or consumption is below the poverty line. The quantities that are to
be summarized are sometimes continuous, as with income or consumption, and
sometimes discrete, as in poverty where the basic data are indicators of whether or
not a household is in poverty. While the estimation of means and standard errors
is familiar, it is worth recording the formulas that take account of differential
weights (inflation factors) and that allow for stratification and clustering.

Finite populations and superpopulations

To make inferences using survey data we need a framework for thinking about how
the data were generated, which means thinking about the population from which
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the data came and about how data collection induces randomness into our sample.
There are two different approaches. In the first, which is standard among survey
statisticians, the population is a finite one—for example all households in Céte
d’Ivoire in calendar year 1985-—and the sample households are randomly selected
from that population just as, in the classic textbook example, balls are drawn from
an urn. The survey data are random because replication of the survey would gene-
rate different samples so that the variability of an estimate, such as the mean of
household income, is assessed by thinking about how it would vary from one
sample to another. The quantity of interest—in the example the average reported
household income of Ivorian households in 1985—is a fixed number that could be
measured with perfect accuracy from a census, which is when the sample coincides
with the population. No assumptions are made about the distribution of income in
the population; what is being estimated is simply the average income in the popula-
tion in the survey year, not the parameter of a distribution.

In the second approach, we are less interested in the actual population in the
survey year, regarding it as only one of many possible populations that might have
existed. The actual population is itself regarded as a sample from all possible such
populations, the infinite superpopulation. The focus of attention is instead the
statistical law or economic process that generated income in the superpopulation,
in populations like the one under study, and the mean is of interest less for itself
than as a parameter or a characteristic of that law or process.

The finite-population or survey-statistical approach is typically associated with
description, while the superpopulation approach is associated with modeling. The
distinction is made by Groves (1989, esp. ch. 6) and will be useful in this book in
which I shall be concerned with both. The distinction between description and
modeling is often of no more than philosophical interest—there is no dispute about’
the appropriate formula for a mean or standard deviation. But when we come to the
econometric analysis in Chapter 2, where the tradition has been of modeling, there
are sometimes sharp differences in the recommended calculation of apparently
identical concepts. Recent trends in econometric practice have tended to emphasize
description at the expense of modeling—an emphasis shared by this book—so that
the traditional gulf between the practice of survey statisticians and econometricians
is narrowing. In consequence, I shall sometimes follow one approach, and some-
times the other, whichever seems more appropriate to the problem at hand.

The example of the mean can be used to illustrate the two approaches and pro-
vides an opportunity to record the basic formulas. Suppose that we have a simple
random sample of n observations from a population of size N, and that the quantity
of interest is x, with observations x, i running from 1 to n. The sample mean % is
the obvious estimator of the population mean, where

n
(1.3) x=n'1Xx,.

i=1
The sample mean, (1.3), is a random variable that will vary from one sample to
another from a given population and, in the superpopulation approach, from one
population to another.
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Suppose that we want to know the expectation of ¥ over the different surveys.
This seems like a complicated matter for the survey statistician, because there are
a large number of different ways in which n objects can be selected from a popu-
lation of N objects, and it is necessary to calculate the mean for each and its associ-
ated probability of occurrence. A simple shortcut (see Cochrane, 1977, p. 28) is to
rewrite (1.3) as

(1.4) %= n":a.x

where the sum now runs over the whole population, to N rather than n, and a isa
random variable that indicates whether i is in the sample, taking the value 1 if so,
and 0 otherwise. The x’s on the right-hand side of (1.4) are no longer random vari-
ables, but simply the fixed x’s in the (finite) population. Hence, when we take ex-
pectations of (1.4), we need only take expectations of the a’s. Since we have a
simple random sample, each i has an equal probability of being included, and that
probability is simply the ratio of n to N. The expectation of each g, is therefore 1
times the probability of its being 1, which is n/N, plus 0 times the probability of
its being 0, which is (1 - n/N), atotal of n/N. We then have

N N
(1.5) E(x)=n"X(n/N)x, = N'Xx =X

i=1 i=1
where X is the population average in which we are interested.

A superpopulation approach makes more assumptions, but is in some ways
more straightforward. It might postulate that, in the superpopulation, x is distribu-
ted with mean , a parameter that is the same for all households. We then have im-
mediately, from (1.3),

(1.6) Ex)=n'"Xp=np

also as desired. The finite-population approach is more general, in that it makes no
assumptions about the homogeneity of the observations in the sample, but it is also
more limited, in that it is specifically concerned with one population only, and
makes no claim to generality beyond that population.

The technical note at the end of this subsection shows that the variance of ¥ is

1=
(1.7) V(%) = _;l_ffs2
where S? is given by
N
(1.8) S2=WN-DTX(x,-X)
i=1

and can be thought of as the population variance, and 1 -f is the “finite-population
correction” (fpc),

(1.9) 1-f = (N-n)/N.
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Except in the unusual situation where the sample is a large fraction of the popu-
lation, the fpc is close enough to unity for the factor 1-£ in (1.9) to be ignored.
Indeed, in this book I shall typically assume that this is the case; sampling texts are
more careful, and can be consulted for the more complex formulas where neces-
sary.

The superpopulation approach to the variance would postulate that each x; is
independently and identically distributed with mean p and variance a2, so that
from (1.3),

(1.10) V() = E(x-p)? = nla?
Since both ¢ and S? are estimated from the sample variance

(1.11) § = (n—l)“;: (x;-% )?
i=1

and provided we ignore the fpc, there is no operational difference between the two
approaches. Both use the same estimate of the mean, and both estimate its variance
using the formula

(1.12) P(x) =n'§? = n"(n—l)"i(x,.—fc)z.
i=1

Books on sampling often give separate treatment to the estimation of means and
the estimation of proportions. However, a proportion is simply the mean of a binary
(0,1) indicator that tells us whether the observation does or does not possess the
attribute of interest. In consequence, the formulas above—as well as those in the
next subsections—can also be used for estimating proportions and their sampling
variability. To see how this works and to link up with the analysis of poverty in
Chapter 3, suppose that x; is 1 if household i is in poverty, and is O otherwise. The
estimate of the proportion of households in poverty is then the mean of x

(1.13) p=n'Tx =nin

i=1
where n, is the number of households with x; = 1. If we have a simple random
sample, the estimated variance of p is given by (1.12), which since x, can only take
on the two values 0 or 1, takes the simple form

(1.14) v(p) = n"(n-l)"[El(l =P+ X pAl = (n-1)7'p(1-p).
i= i=ny+1

Formula (1.14) is useful because it is simple to remember and can be calculated on
the back of an envelope. Even so, the same answer is given using the standard
formulas and treating the x’s as if they were continuous.

*Technical note: the sampling variance of the mean

I follow the derivation in Cochrane (1977, p. 29) which starts from (1.4) and from
its implication that
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N N N
(1.15) V(x) = n [ Xxlvar(a) +2X X xx,c0v(a,a,)].

i=1 i=1j<i

Because a; is binomial with parameter (n/N ), its variance is (n/N )(1-n/N). The
random variable a,a ; is either 1, if both i and j are in the sample, or 0, if not. Since
the sample is drawn without replacement, the probability of the former is (n/N)
multiplied by (r-1)/(N~1). Hence

cov(a,a,) = E(aiaj) —E(ai)E(aj)

(1.16) _ -1 _(ﬁ)z ___n_(,.n
N(N-1) \ N N(N-1) N)

If the variance and covariance formulas are substituted into (1.15), and rearranged,
we obtain (1.7) and (1.8).

Using weights or inflation factors

In most surveys different households have different probabilities of being selected
into the sample. Depending on the purpose of the survey, some types of households
are overrepresented relative to others, either deliberately as part of the design, or
accidentally, for example because of differential response. In both cases, if the dif-
ferent types of households are different, sample means will be biased estimators of
population means. To undo this bias, the sample data are "reweighted” to make
them representative of the population. In this subsection, I discuss some of the
reasons for different probabilities of selection, and the procedures that can be used
to calculate population statistics and to assess sampling variability.

Suppose that each of the N households in the population is assigned a sampling
probability .. A sample of size n is chosen, and I assume that the selection is done
with replacement, so that in principle a given household can appear more than
once. Although samples are almost never selected this way in practice, the differ-
ence between sampling with and without replacement is only important when the
sample size is large relative to the population. Pretending that the sample is drawn
with replacement is akin to ignoring finite-population corrections, and has the ad-
vantage of simpler formulas and derivations. Note that 7, is not the probability that
i is in the sample, but the probability that i is selected at each draw, the sample
being constructed from » such identical draws. Sample households with low values
of w, have a low ex ante probability of being selected into the sample, and such
households are underrepresented relative to those with high ex ante probabilities.
In order to correct this imbalance between sample and population, the observations
need to be reweighted, weighting up those that are underrepresented and weighting
down those that are overrepresented.

The weights that we need are inversely proportional to T_; in particular, define
for each household the weight w,

(1.17) w, = (nm)™.
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For a simple random sample with replacement, each household’s probability of
selection at each trial is 1/N so that, in this case, the weights w, are the same for
all observations and equal to N/n, which is the “inflation factor” that blows up the
sample to the population. When the probabilities differ, the quantity nm, is the
expected number of times that household i shows up in the survey. When the
sample is small relative to the population, so that the probability of a household
appearing more than once is small, n 7, is also approximately equal to the prob-
ability of i being in the sample. As aresult, w, in (1.17) is approximately equal to
the number of population households represented by the sample household i and
can therefore be thought of as the household-specific inflation factor.

Consider first the sum of the weights which, since each is a household inflation
factor, might be thought to be an estimate of the population size N; hence the nota-
tion

M=

(1.18) N=ZXw,.

1

i

Define the random variable ¢, as the number of times that household i shows up in
the sample; this will usually take the values 1 or 0 but, since sampling is with re-
placement, could in principle be larger. Its expected value is n,, the number of
trials multiplied by the probability of success at each. The sum of weights in (1.18)
can then be rewritten as

N
(1.19) N=ZX1w,
i=1

with the sum running from 1 to N. Taking expectations,

N N
(1.20) E(N) = XE(t)w, = Znmw, = N
i=1 i=1

so that the sum of the weights is an unbiased estimator of the population size.

Suppose that x; is the quantity of interest reported by household i. We estimate
the total of x in the population by multiplying each x, by its weight w; and adding
up, so that

~

(1.21) X, = 2w,

i
i=1

M=

By a precisely analogous argument to that for N, we have

(1 22) E (XAM ot

N N

)= LE@)wx, = Lx =X,
i=1 i=1

so that X 18 unbiased for the population total. The sampling variance of (1.21) is

2

N 2 N
1.23) V(x,) =+ Eni(fi —Xm,) - l[ r X —x,f,,]
T,

ni=1 n{ i1
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(see the technical note on p. 49 below and Cochrane 1977, pp. 252-54). An un-
biased estimate of (1.23) can be obtained from the sample by definingz, = w.x; and

using the formula
n

(1.24) P(X,) = LY (z-2)
n-1 =1

The sampling variance (1.23) can be used to give a formal answer to the ques-
tion of why different probabilities can enhance efficiency, and to tell us what the
optimal probabilities should be. In particular, it is a simple matter to show that
(1.23) is minimized subject to the constraint that the 7’s add to 1 by selecting the
7’s to be proportional to the x’s. This is sampling with probability proportional to
size (p.p.s.); larger values of x contribute more to the mean so that efficiency is en-
hanced when larger values are overrepresented. Of course, if we knew the x’s, there
would be no need to sample, so that in practice we can use only approximate p.p.s.,
in which the 7’s are set proportional to some other variable that is thought to be
correlated with x and that is known prior to sampling.

We are often interested, not in the total of x, but its mean, X, which can be
estimated from the ratio of the estimated total (1.21) to the estimated population,
(1.19). This is the probability-weighted mean
(1.25) %, = Zwx/ Xw, = Lz,

i=1 i=1 i=1
where the v, are the w; from (1.17) normalized to sum to unity,

n
(1.26) v, = w,/ Xw,
k=1

A simple example of the effects of weighting is given in Table 1.4, which pre-
sents the weighted and unweighted means and medians—see (1.30) below for the
definition of a weighted median—for total household expenditure by race in the
South African Living Standards Survey. These calculations use the weights sum-
marized in Table 1.1 and discussed on page 16 above. For the Blacks, Coloreds,

Table 1.4. Household total expenditures, weighted and unweighted means,

South Africa, 1993
(rand per month)

Means Medians
Race Weighted Unweighted Weighted Unweighted
Blacks 1,053 1,045 806 803
Coloreds 1,783 1,790 1,527 1,547
Asians 3,202 3,185 2,533 2,533
Whites 4,610 4,621 4,085 4,083
All races 1,809 1,715 1,071 1,029

Source: Author’s calculations using the South African Living Standards Survey, 1993.
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and Asians, the weights do not vary much within each group, so that there is little
difference between the weighted and unweighted estimates. For Whites, there is
more within-group variance in weights, but it has little effect on either estimate be-
cause there is little or no correlation between the weights and the level of income
within the group. However, as we saw in Table 1.1, lower participation by Whites
made the weights higher for Whites than for the other groups, so that when we
calculate estimates for the whole country, their higher incomes result in weighted
estimates that are larger than the unweighted estimates. This result illustrates the
general point that, whenever there is an association between the sampling prob-
abilities and the quantity being measured, unweighted estimates are biased.

Because X, is the ratio of two random variables, it is not an unbiased estimator.
However, because the variances of its numerator and denominator, (1.21) and
(1.19), both converge to zero as n tends to infinity, it will converge to the popula-
tion mean. The sampling variance of X, can be evaluated using standard approxi-
mation techniques for ratio estimators; in the technical note on p. 49 below, I
sketch the argument that leads to

(1.27) V(z,) =~ N2 g:w‘.(xi—)-()z
i=1

which can be estimated from the sample data using

n
n -
vl -x,)%

(1.28) v(x,) =
n-1i1

Note that the estimated variance will usually need to be specially coded. In parti-
cular and except for simple random sampling, (1.28) is not equal to the sample
estimate of the population variance—equation (1.29) below—divided by the
sample size (compare (1.11) and (1.12)). Formula (1.27) can also be used to find
the probabilities that maximize the precision of the probability-weighted mean
(1.25). Recalling that w, = (n ,.)‘l and choosing the t’s to minimize (1.27) subject
to the constraint that their sum be 1, it is easily shown that the optimal selection
probabilities should be proportional to the absolute value of the deviation from the
mean |x, - X|. It is information on the exceptional cases that adds most to the
precision of the estimated mean.

It is worth noting that the probability-weighted mean (1.25) is not the only pos-
sible estimate. In particular, if the population size N is known, an estimate of the
mean can be obtained by dividing )fm by N. But there are a number of reasons
why the weighted mean is frequently more useful. First, the population size is often
not known, but is estimated from the survey itself, for example by randomly select-
ing a set of villages, enumerating all households in each, and using the totals to
estimate the number of households in the population. Second, when we come to use
the survey data to calculate means or other statistics, some data are unusable, be-
cause they are missing, because of transcription errors, or because they take on
clearly implausible values. There is then little option but to average over the -
“good” observations, renormalizing the weights to sum to unity. Third, in many
applications we are not interested in means per household, but in means per person.
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We want to know the fraction of people in poverty, not the fraction of households
in poverty. Or we may want to know the fraction of elderly, or women, or children
who have some characteristic. In such cases, we weight the data, not by the number
of households represented by the sample household, but by the number of people
it represents. To get statistics about persons in the population, the quantity sur-
veyed, say household per capita consumption, should be weighted not by the w,
themselves, but by the w; multiplied by the number of people in household i. The
total of these weights is (in expectation) the number of people in the population,
not the number of households; as before, this population total may or may not be
known in advance, but we often encounter cases where the relevant population total
is estimated by summing weights from the survey estimate. Fourth and finally, we
often want to calculate means for subgroups, and to do so in a way that is repre-
sentative of the relevant subpopulations. Once again, %, is the relevant estimator
unless we know the size of each subpopulation.

The weights can be used to estimate other population statistics analogously to
the mean in (1.25). For example, the population variance S? is estimated from the
sample by weighting the individual squared deviations from the mean so that

n n n
(1.29) - % v (x,-%, )P = "y w,(x,-%,)2/ Zw,
n-1 n-1i1 ' i=1

where the adjustment factor n/(n - 1) is of no practical significance, but matches
(1.29) to the standard unbiased estimator (1.11) in the case where w, = N/n. Ex-
pression (1.29) would be used, for example, when using the variance of income or
of the logarithm of income to measure inequality. Weights must also be used when
ranking households, for example when calculating medians, quartiles, or other per-
centiles in the population. In the sample, median household income (for example)
is that level of income below which (and above which) lie half the sample obser-
vations. When estimating the median for the population, we must find instead the
level of income such that, when we take all sample households with lower income,
the sum of their weights is half the total sum of weights. Formally, the median £,
is defined by

(1.30) Y1(xs£)v, = 05
i=1

where the v, are the normalized weights in (1.26) and the function 1(e) is an indi-
cator that takes the value 1 if the statement e is true and is 0 otherwise. Other per-
centiles are calculated by replacing the 0.5 in (1.30) by the appropriate fraction. In
practice, the easiest way to work is to sort the data in order of increasing x;, and
then to calculate a running sum of the normalized weights. The percentiles are then
read off from this running sum. Example 1.1 in the Code Appendix gives the
STATA program used to calculate the results in Table 1.3; this shows how to label
households by their deciles of total household income and expenditure, and to sum-
marize variables by those deciles.

In principle, formulas can be derived for sampling variances for medians, vari-
ances, and functions of these statistics. But the calculations are in some cases quite
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complex, and the approximations and assumptions required are not always palat-
able. As we shall see below, the bootstrap often offers a more convenient way to
assess sampling variability in these cases.

*Technical note: sampling variation of probability-weighted estimates

The probability-weighted mean is the ratio of two estimates, X 1 and N. The vari-
ance of such a ratio can be approximated by

(1.31) var(%,) = N2[var(X,,) - 2Xcov(X,,N) + X*var(N)].

tot
Tillustrate only the derivation of the first term in square brackets; the other variance
and the covariance are readily obtained in the same manner. From (1.21),

N
(1.32) X, = Xtwx,

i=1

The only random variables in (1.32) are the ¢’s, so that

N N N
(1.33) var()fm) = X w,.zx,.2 var(t)+ X X wwxx,cov(tt).

i=1 jriisl
The ¢'s follow a multinomial distribution, so that the variance of ¢, is nm,(1 -7,)
and the covariance between ¢, and ¢, is -n7, 7. Substituting in (1.33) and rear-
ranging gives (1.23) above. That (1.24) is unbiased for (1.23) is shown by inserting
t's, and changing the summation from n to N, and taking expectations (see also
Cochrane). Substitution of (1.33) into (1.31) together with the comparable formulas
for var(ﬁ ) and cov(X ,0,,1\7 ) gives (1.27). The sample estimate (1.28) is construc-
ted by replacing the square of N in the denominator by the square of its estimate N,
replacing X by its estimate %, and replacing the population sum of squares by its
sample equivalent, remembering that for every household in the sample, there are w,
in the population. The scaling factor n/(n - 1) is conventional and clearly has little
effect if n is large (see also (1.29)).

Stratification

The effect of stratification is to break up a single survey into multiple independent
surveys, one for each stratum. When we think of the different samples that might
be drawn in replications of the survey, the strata will be held fixed while the parti-
cular households selected from each will vary from sample to sample. Without stra-
tification, the fraction of the sample in each stratum is left to chance. In conse-
quence, estimates of population parameters vary across samples because each
sample has different fractions of observations in each stratum so that, when the
means differ across strata, their weighted average will also differ. As a result, strati-
fication can reduce sampling variability whenever the means differ across strata.

Suppose that there are S strata, labeled by s, that we know the total population
N as well as the population in each stratum N, and that the mean for stratum s is }—{s.
The population mean, or “grand” mean, is then
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s
(1.34) X=ZWJ/NZX
s=1
which can be estimated from
s
(1.35) %= L(NJN)Z,
s=1

where X_ is the estimated mean for stratum s. Note that the calculation of these
means w1ll typically involve weights, as in (1.25) above. The population shares
may or may not be the same as the sample shares; stratification is about breaking
up the sample into subsamples, not about weighting. Nevertheless, it is often the
case that the sampling fractions are different in different strata. In such cases, as I
shall show below, it is possible to incorporate the stratum weights into the weights
for each observation.

Because the strata are independent, the variance of the estimate of the popula-
tion mean (1.35) takes the simple form, ignoring the fpc,

N
(1.36) V(x) = Z(NJNPV(Z),
s=1

where V(%) is the variance of the estimate of the stratum mean. If instead of the
stratified survey, we had used a simple random sample, the numbers in each stra-
tum, n_, would be random variables within the total sample size n. Hence, if we
write the sample mean for the simple random sample design analogously to (1.35),

1.37) X, = X(n/n)x,
s=1

which looks very similar to (1.35), especially since the expectations of the sample
ratios (n,/n) are the population ratios (N,/N ). However, in the unstratified design,
the fractlons of the sample in each stratum will vary from sample to sample, so that
the variability of the estimate will not only have a component from the variability
of the stratum means, as in the stratified sample, but also a component from the
variability of the fractions in each stratum. With some algebra, it can be shown that
the variances of the two estimates are linked by the approximation

(1.38) V(x,,) = V(x)+n"E(N/N)(x %)%

As would be expected, the variance is larger in the simple random sample than in
the stratified sample, and will be the more so the larger is the heterogeneity across
strata. When the strata means coincide with the grand mean, there is no increase in
efficiency from stratification.

In practice, estimation in stratified samples is usually done using simple adapta-
tions of the formulas for the weighted estimates in the previous subsection. Sup-
pose that we think of each stratum as a separate survey, and write the inflation fac-
tors for households in stratum s as w,, where, corresponding to (1.17),

(1.39) = (n,m)"
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where n_is the sample size from stratum s, and 7, is the probability that i is drawn
at each tnal The within-stratum sum of these welghts is an unbiased estimator of
the stratum population, N, and the grand sum over all observations is an unbiased
estimator of the total population. Hence, we can define a probability-weighted esti-
mate of the grand mean corresponding to (1.35)

)
(1.40) x,= L(NJ/N)%,,
s=1

where %, is the probability-weighted mean (1.25) computed for stratum s. Note
that in (1.40), unlike (1.35), the fractions of the population in each stratum are esti-
mated, and are therefore random variables. As a result, (1.40) loses what might be
expected from stratification, that without variation within strata, there is no vari-
ance in an estimate from a stratified sample (see (1.36). That this is not the case is
because there are differential weights within strata, so that different samples will
give different weights to each stratum mean. Of course, if the ratios N /N are avail-
able, they can be used to replace the estimates in (1.40), with a gain in precision.

If we substitute the appropriate sums of weights for ]\7_“ and N in (1.40), we get

5 5 "

(1.41) %, = (ZZxw) /(X Zwy)

s=1i=1 s=1i=1
where x, is the observation from household i in stratum s. Note that (1.41) is
simply the probability-weighted mean without any explicit allowance for the strati-
fication; each observation is weighted by its inflation factor and the total divided
by the total of the inflation factors for the survey. Like (1.25), it is also a ratio
estimator; the mean is estimated by the ratio of the estimated total—in the numer-
ator—to the estimated population size—in the denominator. In consequence, we
can use the variance formula (1.31) to approximate the variance of (1.41) in terms
of the variances and covariance of the totals which, in turn, are sums of stratum-
specific terms because sampling is independent within each stratum. The algebra
is similar to that used to derive (1.23) and (1.27), and yields

- N)
[A)

As was the case for (1.23) and (1.24), a feasible sample-based estimator of (1.42)
starts from defining z, = x, and usmg the formula
S

(1.43) v(x,) =X

w
s=1 =

N,

N 5 X, _
E-l- [(—"‘—NTX\_
s=1 Ry i=1 . s

iy

2

(1.42) V(x,) = -X

1
N?

is n’

5y _ = o V2
g [(Zi.\' - ZA\') xw (wi.\' ws)]

=

where Z_and w, are the stratum means of the z’s and the weights, respectively.

Two-stage sampling and clusters

Within strata, most household surveys collect their data in two stages, first samp-
ling clusters, or primary sampling units (PSUs), and then selecting households from
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within each cluster; this is the standard two-stage stratified design. Clustered sam-
ples raise different statistical issues from stratified samples. When we imagine rep-
licating a survey, which is how we think about sampling variability, the strata are
held constant from sample to sample, but new clusters are drawn every time. For
example, each potential survey might select an equal number of households from
all of the provinces of the country (the strata), but would always select a new set
of villages within provinces (the clusters). Probabilities of selection can differ at
either or both stages of the survey, between clusters, or between households within
clusters. The formulas for weighted and unweighted means are not affected by the
two-stage design any more than they were affected by stratification. But the
sampling variability of these estimates is affected by the design. Because house-
holds within clusters are often similar to one another in their relevant character-
istics, it is frequently the case that clustering will increase variability compared
with simple random sampling. In this subsection, I introduce some notation, record
the formulas for the means and their sampling variation, and explain how it is that
clustering reduces precision, and the consequences of ignoring the clustering in
calculating variability. This is perhaps the most important message of this sub-
section, that it can be a serious mistake to treat a two-stage sample as if it were a
simple random sample; the use of standard formulas can seriously overstate the
precision of the estimates.

I start by supposing that there is no stratification, or equivalently, that there is
only a single stratum. Because separate strata can be thought of as separate surveys,
a simple way to deal with a stratified sample is to work with one stratum at a time,
and then to reassemble the survey as a whole from its components. I shall do so,
and record the relevant formulas, at the end of the subsection.

We need notation for the numbers of clusters and households in the sample and
in the population. Suppose that there are N clusters in the population from which
n are selected into the survey; this preserves the previous notation for the case
where each observation is a cluster. I use the suffix ¢ to denote a cluster or PSU, and
m_ and M to denote the number of sample and population households in cluster
c. I shall use T for the total number of households in the population

N
(1.44) T=XM,

c=1

Suppose that sampling is with replacement, but with unequal probabilities at both
stages. I use _ to denote the probability of selection for cluster c in the first stage,
and T, for the probability that i is selected at the second stage, conditional on ¢
having been selected at the first. The unconditional probability that household i in
cluster c is selected at a single two-stage draw is therefore 7, 7 . Proceeding as
before, we can define inflation factors for each stage of the survey. To differentiate
these stage-specific inflation factors from the overall inflation factors, I use differ-
ent notations for each. Define & _ and h,, by

(1.45) h, = (nm), Ry = (m.m,)"!
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so that h_ is the number of population clusters represented by cluster ¢, and b, is
the number of cluster-c households represented by household i in cluster ¢. The
overall inflation factor, the number of households in the population represented by
household i, is the product of & . and h,, which corresponds to our previous survey
weight w,,

(1.46) w, = hh, = (xR 7, mn)".

c I ¢

Note that the sum of these weights over cluster c,

m, m,
(1.47) w,=Xw_ =hXh,
i=1 i=1
is an inflation factor that tells us how many population households are represented
by the collectivity of sample households in cluster c.
The probability-weighted mean is defined in the standard way; adapting (1.25)
to recognize the clusters,

n c n
zi i WicXic z:l WeXe, n
- c=1i= _ = _ -
(1.48) Xy = - =X VeXew
n M n c=1
TXw, Lw,

where x_, is the probability-weighted mean for cluster ¢ and the v’s are the cluster
weights (1.47) normalized to sum to 1. The evaluation of the variance of (1.48) is
complicated by the randomness in the cluster means, as well as in the selection of
clusters themselves. The algebra is simplified if we follow Cochrane (1977, pp.
275-76) and calculate expectations and variances in two stages, so that, for the
mean %,

(1.49) E(x,) = E|[E\(%,)]

where the expectation E, is taken with respect to the second-stage sampling, treat-
ing the choice of clusters as fixed, and where E| is taken with respect to the choice
of clusters. The corresponding variance formulas are

(1.50) V(z,) = VIIE(x,)] + E [V, (%,)].

The application of (1.49) and (1.50) is relatively straightforward using previous
results, and after a good deal of algebra, we reach

N N M,
(1.51) V(z,) =n ' d)(X -X2+T2L Zw, (X, -X,)?

c=1 c=1j=1
where ¢, is the fraction of the population in cluster ¢, and X, and X are the true
means for the cluster and the population, respectively. (For comparison, note that
(1.51) reduces to (1.27) when each cluster contains a single household and the
weights satisfy n “nc =w_,and ¢, =N 1), A consistent estimate of (1.51) can be
obtained from
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n
(1.52) P(%,) = —— X v2(%, -%,)?
n-1 ¢-1
which is identical to (1.28), with households replaced by clusters, and individual
data points replaced by cluster means.

It should be emphasized that, in spite of its formal similarity, the variance (1.52)
is quite different from the corresponding formula when there is no clustering, and
that the use of the incorrect formula can be seriously misleading. While it is some-
times the case that estimated variances are not much altered by allowing for strati-
fication or differential weights, clustering is ignored at one’s peril. I illustrate for
the simplest case, where there are M households in each of the N clusters, and at the
first stage, clusters are selected by simple random sampling. Each cluster is then
equally weighted, so that when we estimate the variance from (1.52) we get

srmy 1 = =2
(1.53) I(E) = s B0

If we were mistakenly to ignore the clustering and treat each observation as an in-
dependent draw in a simple random sample of size mn, we would use (1.12) to give

nm
(1.54) §(F) = — T T, -%)? = g2
- mn(mn-1) ¢=1i=1 mn

If we substitute for the cluster means in (1.53) and rearrange, we get
(1.55) V(x) = 9, (X)[1+(m-1)p]

where p is defined by

(1.56) p = c=1j= .(x]c %) %)

—
T
(ks

mn(m-1)§?

The quantity in (1.56) is a sample estimate of the intracluster correlation coef-
ficient. Like any correlation coefficient, p measures the similarity of values, in this
case within the clusters. When all the x’s are the same in the same cluster, p = 1,
when they are unrelated, p = 0. In practice, for quantities like income and con-
sumption in rural areas of developing countries, p is often substantially larger than
zero and values of 0.3 to 0.4 are frequently encountered. ’

Equation (1.55) shows how the magnitude of p affects the variability of sample
estimates, at least in this simple case. When p =0, the variance of the estimate
from the clustered sample coincides with the variance of the estimate from the
simple random sample. At the other extreme, when p = 1, the factor in square
brackets in (1.55) is m, so that ¥(%) = §2/n and the effective sample size is not the
number of sample observations, mn, but the number of sample clusters, n. When
the observations are the same within each cluster, sampling more than one from
each does nothing to increase the precision of the estimate. In the next subsection,
I shall give some practical examples of the way in which assumptions about sample
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design affect calculations of standard errors, and of the potential for being misled
by the wrong assumption.

Two-stage samples often use a “self-weighting” design. At the first stage, clust-
ers are selected with probability proportional to the number of households they
contain while, at the second stage, an equal number of households is drawn from
each cluster using simple random sampling. This has the effect of making the over-
all, surveywide, inflation factors w, the same for all households. To see how this
works, set

™ = M"‘ = _Aii = _1_ m =m
1.57 c N 4 ic M ’ [4
(1.57) M, T c
c=1

so that, substituting into (1.46), we have

(1.58) w, = T/(mn)

which is the same as in a simple random sample. (Of course, this only applies to the
weights and the computation of sampling variability must still allow for the two-
stage design. A two-stage self-weighting sample is not the same thing as a simple
random sample.)

Self-weighting is simple and elegant. It also had practical utility when compu-
tation was so difficult that the additional complexity of weights was best avoided
if possible. However, self-weighting designs are rarely self-weighting in practice
because adjustments are often made to the weights after the survey, for example to
compensate for unanticipated nonresponse by some set of households, and weights
have to be used in any case. An example is the South African Living Standards
Survey, which had a self-weighting design, but which had to be weighted ex post
(see Table 1.1). Since computation is hardly an issue today, it is unclear why the
design remains so popular.

In practice, it is necessary to combine the formulas for the clustered case with
those that allow for multiple strata. This is conceptually straightforward, although
the notation makes the formulas look forbidding. I denote the strata by the subscript
s, and rewrite the mean for stratum s from (1.48) as

ng ne
(1.59) ,=Lwix /Xw,

c=1 c=1
where the only change is to add a suffix s to indicate the stratum. From (1.35), we
can compute the grand mean over all the strata using

S
(1.60) x,= LNz IN

where the hats denote the usual estimates from the sums of the weights. Substitut-
ing (1.59) into (1.60) gives the probability-weighted estimate of the grand mean in
the familiar form of a ratio between the estimated total of X, and the estimated
population size,
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)
YXw. X YXYXw, x

sl ™ et O X,
(1.61) Yo = = =
S 'l’ S 'l_r mc N
YXw, LY Xw,
s=1c=1 s=1 c=1 i=1

which is simply the weighted mean using all the observations and all the weights
in the survey. An estimate of the variance of (1.59) and (1.61) is obtained following
the same general procedures as for the ratio estimator (1.41) in the stratified case,
but making the adaptions for clustering for the variances within each stratum. The
formulas are simplified if we define the cluster level variable

(1.62) ):mem

If z, is the mean of z_ over clusters in stratum s, the variance of (1.61) can be
estimated from (compare (1.43))

S
(1.63) v(x,,) = Ly E [(z,-2,) - %, (W, - W)
N2 s=1 1 '11: =1

where w__ is the total weight in cluster ¢ of stratum s, and W, is the stratum-s mean
of w, Sample code for equation (1.63) is given in Example 1.2 of the Code
Appendlx, it is also available as a special case of the more general formulas
available in Version 5.0 of STATA.

A superpopulation approach to clustering

It is also possible to take a superpopulation approach to clustering, and as was the
case with simple random sampling, the results are in many ways simpler. They also
provide a useful bridge to the discussion of clustering and regression in Section 1
of Chapter 2. Suppose that there are no weights and that

(164) xic O ac + eic

where p is the mean, o, is a cluster effect, and €, is a random variable with mean
0 and variance 0 that is independently and identically distributed for all i and c.
The cluster effects o _ are also random with mean 0 and variance o , are inde-
pendently and identically distributed across clusters, and are mdependent of the €’s.
These independence assumptions are the counterpart of the independence of the
two stages of the sampling in the finite-population approach and the presence of the
o’s allows cluster means to differ from the overall mean.

As before, the obvious estimator of p is the sample mean %, and straightforward
calculation gives

(1.65) E(®) = p; V() =n'o2+@mm)ldl.

The variance in (1.65) is the counterpart of (1.51) when both stages are by simple
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random sampling. It is also instructive to write it in the form

2 2 2
o, +t0,

Og 02
(1.66) V(z) = 1+(m-1)——=| = —[1+(m-1)p],
nm ol+ol nm

where o = 02 + 0: is the variance of x,, and p, the ratio of oi to o? is the intra-
cluster correlation coefficient (compare (1.55) above).
An unbiased estimator of V(X) is given by

(1.67) 9®) =n 8 = n (-1 T (%,-%)
c=1

which corresponds to (1.52). In both cases the variance can be computed by con-
sidering only the variation of the estimated cluster means, ignoring within cluster
variability.

Iustrative calculations for Pakistan

For poverty and welfare calculations, we often use household per capita expendi-
ture (PCE)—total expenditure on goods and services divided by household size—as
a measure of living standards. I use measurements of PCE from the Pakistan Living
Standards Survey-—formally the Pakistan Integrated Household Survey, or PIHS—
to illustrate the sort of design that is encountered in practice, as well as the conse-
quences of the design for the calculation of statistics and their standard errors.
The survey documentation will usually explain how the stratification was done
and the primary sampling units selected. Identifiers for the stratum and cluster of
each household are sometimes included as data in one of the household files, but
are more usually incorporated into the household identifiers. This is the case for the
PIHS, where the first three digits of the household code gives the stratum, the next
three the cluster, and the last three the household within the cluster. Example 1.2
in the Code Appendix shows how the household identifiers are broken down to
give stratum and cluster identifiers. In the PIHS there are 22 strata; the four pro-
vinces—Punjab, Sindh, North-West Frontier (N\WFP), and Baluchistan—which are
further stratified by urban and rural and by income level. There are 280 PSUs, or
clusters, between 2 and 37 in each of the strata, and there are between 13 and 32
households in each cluster. The probability weights are sufficiently correlated with
PCE for the weighting to make a difference; the unweighted average of household
PCE is 730 rupees a month, whereas the weighted mean is only 617 rupees a month.
Table 1.5 shows these estimates for the country as a whole and for its four pro-
vinces together with various calculated standard errors. The first two columns are
doubly incorrect; the estimated means ignore the probability weights, and the
standard errors ignore the sample design. The weights are negatively correlated
with PCE—in this case, better-off households are oversampled—so that the un-
weighted means are biased up, which makes the standard errors of little. interest.
The third column shows the (correct) weighted means, and the other columns show
various possible standard errors, each calculated under different assumptions about
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Table 1.5. Estimates of mean household per capita expenditure
and calculated standard errors, Pakistan, 1991

(rupees per capita per month)
Weight,
Weight, strata,
Province X s/ \/; X, s,/ \/E Weight  strata PSU
Punjab 660 16.0 584 13.5 174 17.5 22.6
Sindh 754 21.9 693 18.3 17.4 17.4 35.1
NWFP 963 66.8 647 30.8 24.6 24.6 37.6
Baluchistan 682 30.6 609 31.0 41.0 41.1 96.2
Pakistan 730 14.1 617 9.9 12.0 12.0 17.0

Note: % is the unweighted mean, and §/y/n a standard error calculated according to (1.12). %, is the
probability-weighted mean and §, /y/n is computed from the weighted sample variance (1.29). The
column headed “weight” takes the probability weights into account using (1.28), but ignores stratification
and clustering. The column headed “weight, strata” uses (1.28) for each stratum and then adds the stratam
variances using (1.36). The final column is the appropriate standard error calculated from (1.60).
Source: Author’s calculations using the Pakistan Integrated Household Survey, 1991 (see Example 1.2
in the Code Appendix).

the sample design. The column headed §, //n is what might be calculated if the
weights were used to estimate the standard deviation, using (1.28) rather than
(1.11), but the sample was incorrectly assumed to have been drawn as a simple
random sample for which (1.10) would be the true variance. The next column
recognizes the probability weights explicitly and comes from (1.28), but takes no
account of stratification nor clustering. Allowing for the stratification in the next
column has very little effect on the calculations because most of the variation is
within the strata rather than between them (see equation (1.38) above). The largest
changes come in the last column, where the cluster structure is recognized and the
standard error calculated from (1.62). Because PCE is correlated within the clusters
—the intracluster correlation coefficient for the whole sample is 0.346—the effect-
ive sample size is a good deal smaller than 4,800, and the standard errors that
recognize the fact are a good deal larger. For the country as a whole, the correctly
calculated standard error in the last column is almost twice that in column 4, and
for the province of Baluchistan, the ratio is more than three.

The bootstrap

The more complex is the survey design, the more difficult it becomes to assess the
variability of estimates based on the results. In the previous subsections, I have dis-
cussed only a few of the most important designs, and have provided formulas for
variances only for estimates of the mean. There are other designs, some of truly be-
wildering complexity, and there are other statistics in which we are interested.
Books on sampling techniques provide many more results than can be discussed
here, but even the full range of formulas often falls short of what we need. For ex-
ample, it is more difficult to obtain good estimates of the sampling variability of
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a median than of a mean, and yet in many situations, the median is the more useful
measure of central tendency, if only because it is less influenced by the sort of
outliers that often occur in real data. It should also be noted that for ratios of ran-
dom variables, such as the probability-weighted mean, the variance formulas are
approximate, not exact, and the accuracy of the approximation is not always appar-
ent in practice. Yet means, medians, and ratios are among the simplest quantities
that we want to calculate from survey data. The econometric analyses in later chap-
ters often involve more elaborate calculations and the derivation of sampling distri-
butions in these cases can present formidable difficulties, especially when we want
to allow for the survey design.

The bootstrap is an alternative method of assessing sampling variability. It is no
panacea, and it will not always give better results than the variance formulas, even
approximate formulas. But it offers a mechanical procedure that can be applied in
a wide variety of “difficult” situations, it works in much the same way whether we
are estimating something straightforward, like a mean or a median, or something
more complex, and it substitutes computer power for statistical analysis and alge-
bra, a substitution that is welcome to all who do not enjoy the contemplation of
balls and urns. The bootstrap, which was invented by Efron (1979), samples repeat-
edly, not from the population, which is of course not available for the purpose, but
from the sample. For each resampling, we make whatever calculation we are inter-
ested in, and we keep track of the results over the replications. The variability of
these resampled estimates is then used to assess the variability of the estimator over
different samples from the population. An excellent, readable, and clear intro-
duction to the bootstrap is provided by Efron and Tibshirani (1993).

As always, the simplest case is where we have a simple random sample of (say)
n households. The bootstrap works by repeatedly drawing samples of size n from
the sample with replacement. At each replication, the statistic of interest—mean,
median, variance, or whatever—is calculated and stored. After K replications, the
K values of the statistic are used to compute a measure of dispersion, for example
the standard deviation as a measure of standard error, or—and necessarily in cases
where the moments may not exist—percentiles used to estimate percentiles of the
sampling distribution. The value of K will vary from application to application.
Small values (around 100, say) will typically give a good idea of variance, when
the variance exists, but when we need to calculate the fractions of occurrences in
the tails of the distributions—as will often be the case for percentiles—much larger
numbers of replications may be required. Given a desired level of precision and
some idea of the sampling distribution, the required number of replications can be
calculated in the usual way.

In simple cases, bootstrapping can be shown to lead back to the usual statistics.
For example, suppose that we have a simple random sample (x,, x,, ..., x,) from
which we draw bootstrap samples, always with rephcatlon and of the same size as
the original. A typical replication might be denoted (x, ,xzb, R 5y, with the
superscripted b standing for “bootstrap.” If we wished to bootstrap the mean or the
welghted mean, we would ateach rephcatlon calculate the quantities X ® = n 71X x
or 80 =Xw’x] 2w , where the w’s are drawn simultaneously with the x’s.
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Finding the means and variances of these expressions over the bootstrap replica-
tions can be done in exactly the same way as we found the means and variances for
estimators using samples from the population rather than samples from the sample.
The calculations are particularly straightforward because the bootstrap sample is
drawn by simple random sampling and is the same size as the “population” so that ¢,
the number of times each sample x; appears in the bootstrap sample, is a random
variable with mean 1, variance (1-n"!), and covariance with 1, 0f -n -1, Using
these facts, it is straightforward to show that the mean across replications of the
bootstrapped mean converges to the mean in the original sample, and that the vari-
ances are given by, for the unweighted mean:

(1.68) V(" = n?X (x-%)

and for the weighted mean:

(1.69) V(Z)) = fv,?(x,. %)
i=1

Up to the ratio n/(n - 1), the inclusion of which is a matter of convention in any
case, these are identical to the variance formulas presented above (see (1.12) and
(1.28), respectively). Hence, for both the weighted and unweighted mean, we get
the same estimate of sampling variance either by direct calculation, or by simula-
tion using the bootstrap, provided we have enough replications. Of course, it would
be absurd to use the bootstrap in this case; the simulation is expensive and adds
nothing to the direct and straightforward calculations. But there are many other
cases where analytical formulas are not available, but where the bootstrap can be
used in exactly the same way. And if the bootstrap did not give the right answer in
these familiar settings, there would be no reason to trust it in more complex cases.

It should be noted that the formulas (1.68) and (1.69) do not contain any finite-
population corrections. More generally, the fact that the bootstrap uses sampling
with replacement will prevent it from giving good results when the original sample
is large relative to the population (see Rao and Wu 1988 and Sitter 1992 for a dis-
cussion of methods of dealing with these cases). Care must also be taken in apply-
ing the bootstrap to dependent observations, and it cannot be applied without modi-
fication to data that were collected using a two-stage clustered design. Attempts to
do so will usually understate sampling variability just as the use of formulas that
ignore clustering will usually understate variability. However, the bootstrap can
still be applied to a stratified clustered sample if we treat the strata separately, each
its own survey, and if we resample, not the basic underlying units—the house-
holds—but rather the primary sample units—the clusters. This is straightforward
to implement; a list of the n sample clusters is made, a bootstrap sample of size n
is drawn with replacement, and the individual cluster-level data merged in (see Ex-
ample 1.3 in the Code Appendix). Following this procedure for the PIHS and using
100 bootstrap replications gives a bootstrapped standard error for PCE of 16.5, com-
pared with 17.0 from the formula (see the last column of Table 1.5). The median
PCE is much lower than mean PCE, 461 as opposed to 617 rupees per month, and
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its bootstrapped standard error is only 7.7, less than half the estimated standard
error of the mean. Because the median is relatively unaffected by outliers, and
because the distribution of PCE is so positively skewed, the median varies much less
from one sample to another than does the mean,

These calculations illustrate only the most basic use of the bootstrap although
other, more complex, examples will be seen in later chapters. However, the repli-
cation of the quantity of interest—the mean, median, or whatever—is not always
the best way to use the bootstrap. In particular, when we wish to calculate a confi-
dence interval, the recommended procedure is not to bootstrap the estimate itself,
but rather to bootstrap the distribution of the ¢-value. This is feasible in the fre-
quently occurring situation where we have an approximate or large-sample version
of the standard error, but are skeptical about its accuracy in the application at hand.
The method works as follows. Start out as usual, drawing repeated samples from
the base sample, taking into account the design, and calculating the estimate for
each bootstrap replication. But instead of recording the estimate itself, subtract
from it the estimate from the original full sample, and divide the difference by the
approximate standard error §, say. The result is a bootstrapped ¢- or z-value whose
distribution would be N(0,1) if the estimates were normally distributed and the ap-
proximate standard were correct. But we do not need to assume either normality
or accuracy of the approximation. Instead we carry out enough replications of the
bootstrap to obtain an idea of the actual distribution of the bootstrapped t-values.
In particular, if we want a 90 percent confidence interval for the sample mean, we
calculate the fifth and ninety-fifth percentiles of the distribution of the £’s, £, and t,,,
and use them to construct the confidence interval [£ -1,,8, £ +1,,0]. Note that the
accurate calculation of the tails of the distribution is likely to require large numbers
of bootstrap replications. The benefit is that the procedure will provide more accu-
rate estimates of confidence intervals than either the simple descriptive bootstrap
or the approximate standard errors. An explanation of why this should be so is
beyond the scope of this book; the interested reader is referred to Hall (1995) for
areview.

1.5 Guide to further reading

There are several good texts on survey design, notably Cochrane (1977), Hansen,
Hurwitz, and Madow (1953), Kish (1965), Som (1973), Levy and Lemenshow
(1991), and Wolter (1985). Much the same ground is covered by Murthy (1977),
who also gives a description of the design of the Indian National Sample Survey.
The discussion of sample design and sampling variation in Section 1.4 makes most
use of Cochrane’s treatment; I have also been influenced by the discussion of
sample design and poverty measurement by Howes and Lanjouw (1995). Casley
and Lury (1981) discuss-sample surveys in developing countries, covering sample
and questionnaire design and a host of practical matters. Much the same territory
for developed countries is covered by Groves (1989), who discusses many of the
issues of this chapter, including a much more systematic treatment of the various
sources of measurement error. He also, like Casley and Lury, discusses question-
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naire design, a major omission from this chapter. Sample design issues in the LsMs
surveys are dealt with in Grosh and Mufioz (1996); see also Ainsworth and Mufioz
(1986) and Grootaert (1993). The LSMS group is currently preparing a monograph
that will deal with the experience to date and make recommendations about the
design of similar surveys in the future. Data quality in a broader perspective is
covered in the special June 1994 issue of the Journal of Development Economics.
Pudney (1989) and Skinner, Holt, and Smith (1989) both contain chapters on
survey design and its implications for analysis, Pudney from an econometric per-
spective, and Skinner et al. from a statistical perspective. Both bridge the material
in this chapter and the next. An excellent introduction to the bootstrap is provided
by Efron and Tishbirani (1993), and Wolter (1985) discusses a number of alter-
native computation-intensive methods for calculating variance. Version 5 of STATA
(which was released in the fall of 1996, and thus too late for the applications in this
book) contains a set of commands for dealing with complex survey designs; as
often, the documentation is a good introduction to the theory. Among many other
things, these commands implement the formulas in Section 1.4. A review of econo-
metric applications of the bootstrap is Jeong and Maddala (1993).



2 Econometric issues
for survey data

This chapter, like the previous one, lays groundwork for the analysis to follow.
The approach is that of a standard econometric text, emphasizing regression anal-
ysis and regression “diseases” but with a specific focus on the use of survey data.
The techniques that I discuss are familiar, but I focus on the methods and variants
that recognize that the data come from surveys, not experimental data nor time
series of macroeconomic aggregates, that they are collected according to specific
designs, and that they are typically subject to measurement error. The topics are
the familiar ones; dependency and heterogeneity in regression residuals, and pos-
sible dependence between regressors and residuals. But the reasons for these
problems and the contexts in which they arise are often specific to survey data.
For example, the weighting and clustering issues with which I begin do not occur
except in survey data, although the methodology has straightforward parallels
elsewhere in econometrics.

What might be referred to as the “econometric” approach is not the only way
of thinking about regressions. In Chapter 3 and at several other points in this
book, I shall emphasize a more statistical and descriptive methodology. Since the
distinction is an important one in general, and since it separates the material in
this chapter from that in the next, I start with an explanation. The statistical ap-
proach comes first, followed by the econometric approach. The latter is developed
in this chapter, the former in Chapter 3 in the context of substantive applications.

From the statistical perspective, a regression or “regression function” is de-
fined as an expectation of one variable, conventionally written y, conditional on
another variable, or vector of variables, conventionally written x. I write this in
the standard form

2.1) m(x) = E(ylx) = fdec(y 1x)

where F_ is the distribution function of y conditional on x. This definition of a re-
gression is descriptive and carries no behavioral connotation. Given a set of vari-
ables (y,x) that are jointly distributed, we can pick out one that is of interest, in
this case y, compute its distribution conditional on the others, and calculate the
associated regression function. From a household survey, we might examine the

References in this publication to “Taiwan,” “Republic of China,” and “Taiwan (China)” refer to the
region, “Taiwan, China” References to “Hong Kong” refer to the region, “Hong Kong SAR, China.”
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regression of per capita expenditure (y) on household size (x), which would be
equivalent to a tabulation of mean per capita expenditure for each household size.
But we might just as well examine the reverse regression, of household size on
per capita expenditure, which would tell us the average household size at different
levels of resources per capita. In such a context, the estimation of a regression is
precisely analogous to the estimation of a mean, albeit with the complication that
the mean is conditioned on the prespecified values of the x-variables. When we
think of the regression this way, it is natural to consider not only the conditional
mean, but other conditional measures, such as the median or other percentiles,
and these different kinds of regression are also useful, as we shall see below.
Thinking of a regression as a set of means also makes it clear how to incorporate
into regressions the survey design issues that I discussed at the end of Chapter 1.

When the conditioning variables in the regression are continuous, or when
there is a large number of discrete variables, the calculations are simplified if we
are prepared to make assumptions about the functional form of m(x). The most
obvious and most widely used assumption is that the regression function is linear
in x,

2.2) m(x) = p'x

where  is a scalar or vector as x is a scalar or vector, and where, by defining one
of the elements of x to be a constant, we can allow for an intercept term. In this
case, the B-parameters can be estimated by ordinary least squares (OLS), and the
estimates used to estimate the regression function according to (2.2).

The econometric approach to regression is different, in rhetoric if not in real-
ity. The starting point is usually the linear regression model

2.3) y =Px+u

where u is a “residual,” “disturbance,” or “error” term representing omitted deter-
minants of y, including measurement error, and satisfying :

4) E(ulx) = 0.

The combination of (2.3) and (2.4) implies that B is the expectation of y condi-
tional on x, so that (2.3) and (2.4) imply the combination of (2.1) and (2.2). Simi-
larly, because a variable can always be written as its expectation plus a residual
with zero expectation, the combination of (2.1) and (2.2) imply the combination
of (2.3) and (2.4). As a result, the statistical and econometric approaches are for-
mally identical. The difference lies in the rhetoric, and particularly in the contrast
between “model” and “description.” The linear regression as written in (2.3) and
(2.4) is often thought of as a model of determination, of how the “independent”
variables x determine the “dependent” variable y. By contrast, the regression
function (2.1) is more akin to a cross-tabulation, devoid of causal significance, a
descriptive device that is (at best) a preliminary to more “serious,” or model-
based, analysis.
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A good example of the difference comes from the analysis of poverty, where
regression methods have been applied for a very long time (see Yule 1899). Sup-
pose that the variable y, is 1 if household i is in poverty and is 0 if not. Suppose
that the conditioning variables x are a set of dummy variables representing re-
gions of a country. The coefficients of a linear regression of y on x are then a
“poverty profile,” the fractions of households in poverty in each of the regions.
These results could also have been represented by a table of means by region, or
aregression function. A poverty profile can incorporate more than regional infor-
mation, and might include local variables, such as whether or not the community
has a sealed road or an irrigation system, or household variables, such as the
education of the household head. Such regressions answer questions about differ-
ences in poverty rates between irrigated and unirrigated villages, or the extent to
which poverty is predicted by low education. They are also useful for targeting
antipoverty policies, as when transfers are conditioned on geography or on land-
holding (see, for example, Grosh 1994 or Lipton and Ravallion 1995.) Of course,
such descriptions are not informative about the determinants of poverty. House-
holds in communities with sealed roads may be well-off because of the trade
brought by the road, or the road may be there because the inhabitants have the
economic wherewithal to pay for it, or the political power to have someone else
do so. Correlation is not causation, and while poverty regressions are excellent
tools for constructing poverty profiles, they do not measure up to the more rigor-
ous demands of project evaluation.

Much of the theory and practice of econometrics consists of the development
and use of tools that permit causal inference in nonexperimental data. Although
the regression of individual poverty on roads cannot tell us whether or by how
much the construction of roads will reduce poverty, there exist techniques that
hold out the promise of being able to do so, if not from an OLS regression, at least
from an appropriate modification. Econometric theorists have constructed a cata-
log of regression “diseases,” the presence of any of which can prevent or distort
correct inference of causality. For each disease or combination of diseases, there
exist techniques that, at least under ideal conditions, cafl repair the situation.
Econometrics texts are largely concerned with these techniques, and their applica-
tion to survey data is the main topic of this chapter.

Nevertheless, it pays to be skeptical and, in recent years, many economists and
statisticians have become increasingly dissatisfied with technical fixes, and in
particular, with the strong assumptions that are required for them to work. In at
least some cases, the conditions under which a procedure will deliver the right
answer are almost as implausible, and as difficult to validate, as those required for
the original regression. Readers are referred to the fine skeptical review by Freed-
man (1991), who concludes “that statistical technique can seldom be an adequate
substitute for good design, relevant data, and testing predictions against reality in
a variety of settings.” One of my aims in this chapter is to clarify the often rather
limited conditions under which the various econometric techniques work, and to
indicate some more realistic alternatives, even if they promise less. A good start-
ing point for all econometric work is the (obvious) realization that it is not always
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possible to make the desired inferences with the data to hand. Nevertheless, even
if we must sometimes give up on causal inference, much can be learned from
careful inspection and description of data, and in the next chapter, I shall discuss
techniques that are useful and informative for this more modest endeavor.

This chapter is organized as follows. There are nine sections, the last of which
is a guide to further reading. The first two pick up from the material at the end of
Chapter 1 and look at the role of survey weights (Section 2.1) and clustering (Sec-
tion 2.2) in regression analysis. Section 2.3 deals with the fact that regression
functions estimated from survey data are rarely homoskedastic, and I present
briefly the standard methods for dealing with the fact. Quantile regressions are
useful for exploring heteroskedasticity (as well as for many other purposes), and
this section contains a brief presentation. Although the consequences of hetero-
skedasticity are readily dealt with in the context of regression analysis, the same
is not true when we attempt to use the various econometric methods designed to
deal with limited dependent variables. Section 2.4 recognizes that survey data are
very different from the controlled experimental data that would ideally be re-
quired to answer many of the questions in which we are interested. I review the
various econometric problems associated with nonexperimental data, including
the effects of omitted variables, measurement error, simultaneity, and selectivity.
Sections 2.5 and 2.6 review the uses of panel data and of instrumental variables
(1v), respectively, as a means to recover structure from nonexperimental data.
Section 2.7 shows how a time series of cross-sectional surveys can be used to ex-
plore changes over time, not only for national aggregates, but also for socioeco-
nomic groups, especially age cohorts of people. Indeed, such data can be used in
ways that are similar to panel data, but without some of the disadvantages—parti-
cularly attrition and measurement error. I present some examples, and discuss
some of the associated econometric issues. Finally, section 2.8 discusses two
topics in statistical inference that will arise in the empirical work in later chapters.

2.1 Survey design and regressions

As we have already seen in Section 1.1, there are both statistical and practical rea-
sons for household surveys to use complex designs in which different households
have different probabilities of being selected into the sample. We have also seen
that such designs have to be taken into account when calculating means and other
statistics, usually by weighting, and that the calculation of standard errors for the
estimates should depend on the sample design. We also saw that, standard errors
can be seriously misleading if the sample design is not taken into account in their
calculation, particularly in the case of clustered samples. In this section, I take up
the same questions in the context of regressions. I start with the use of weights,
and with the old and still controversial issue of whether or not the survey weights
should be used in regression. As we shall see, the answer depends on what one
thinks about and expects from a regression, and on whether one takes an econo-
metric or statistical view. I then consider the effects of clustering, and show that
there is no ambiguity about what to do in this case; standard errors should be cor-
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rected for the design. I conclude the section with a brief overview of regression
standard errors and sample design, going beyond clustering to the effects of strati-
fication and probability weighting.

Weighting in regressions

Consider a sample in which households belong to one of S “sectors,” and where
the probability of selection into the sample varies from sector to sector. In the
simplest possible case, there are two sectors, for example, rural and urban, the
sample consists of rural and urban households, and the probability of selection is
higher in the urban sector. The sectors will often be sample strata, but my concern
here is with variation in weights across sectors—however defined—and not di-
rectly with stratification. If the means are different by sector, we know that the
unweighted sample mean is a biased and inconsistent estimator of the population
mean, and that a consistent estimator can be constructed by weighting the indivi-
dual observations by inflation factors, or equivalently, by computing the means
for each sector, and weighting them by the fractions of the population in each.
The question is whether and how this procedure extends from the estimation of
means to the estimation of regressions.

Suppose that there are N, population households and n_ sample households in
sector s. With simple random sampling within sectors, the inflation factor for a
household i in s is w, = N /n_, so that the weighted mean (1.25) is

N N
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Hence, provided that the sample means for each sector are unbiased for the cor-
responding population means, so is the weighted mean for the overall population
mean. Equation (2.5) also shows that it makes no difference whether we take a
weighted mean of individual observations with inflation factors as weights, or
whether we compute the sector means first, and then weight by population shares.

Let us now move to the case where the parameters of interest are no longer
population totals or means, but the parameters of a linear regression model. With-
ineachsector s = 1,..,S5,

2.6) Y, = X,B, +u,

and, in general, the parameter vectors (B differ across sectors. In such a case, we
might decide, by analogy with the estimation of means, that the parameter of
interest is the population-weighted average

Y
@7 B=N"LNB,.
v ]
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Consider the only slightly artificial example where the regressions are Engel
curves for a subsidized food, such as rice, and we are interested in the effects of a
general increase in income on the aggregate demand for rice, and thus on the total
cost of the subsidy. If the marginal propensity to spend on rice varies from one
sectors to another, then (2.7) gives the population average, which is the quantity
that we need to know.

Again by analogy with the estimation of means, we might proceed by estimat-
ing a separate regression for each sector, and weighting them together using the
population weights. Hence,

S N_.,
(28) B E —]\—;p ﬁ_\- = (Xx/X‘\*)_IX.\'/y.\"

Such regressions are routinely calculated when the sectors are broad, such as in
the urban versus rural example, and where there are good prior reasons for sup-
posing that the parameters differ across sectors. Such a procedure is perhaps less
attractive when there is little interest in the individual sectoral parameter esti-
mates, or when there are many sectors with few households in each, so that the
parameters for each are estimated imprecisely. But such cases arise in practice;
some sample designs have hundreds of strata, chosen for statistical or adminis-
trative rather than substantive reasons, and we may not be sure that the parameters
are the same in each stratum. If so, the estimator (2.8) is worth consideration, and
should not be rejected simply because there are few observations per stratum. If
the strata are independent, the variance of f is

s(N)? s{N)?
2.9 vig) = | =l viB) = | = Fx/x)!
29) () ‘_I(N] 6. _,( N] o, (X,X,)

where 0 is the residual variance in stratum s. Because the population fractions in
(2.9) are squared, B will be more precisely estimated than are the individual ﬁ

Instead of estimating parameters sector by sector, it is more common to esti-
mate a regression from all the observations at once, either using the inflation
factors to calculate a weighted least squares estimate, or ignoring them, and esti-
mating by unweighted OLS. The latter can be written

s, s ,
XX Xy |.
s=1 s=1

In general, the OLS estimator will not yield any parameters of interest. Suppose
that, as the sample size grows, the moment matrices in each stratum tend to finite
limits, so that we can write

(2.10) b=

@.11) plimn'X/X = M_; plimn'X)y, = c, = M,

§
n-wo n-‘m

where M_and c_ are nonrandom and the former is positive definite. (Note that, as
in Chapter 1,1 am assuming sampling with replacement, so that it is possible to
sample an infinite number from a finite population.) By (2.11), the probability
limit of the OLS estimator (2.10) is
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s 1y
(2.12) plimp = ( ) (ns/n)Ms) X (n,/n)c,
s=1 s=1

where I have assumed that, as the sample size grows, the proportions in each
sector are held fixed. If all the B, are the same, so that ¢, = M_p for all 5, then the
OLS estimator will be consistent for the common B. However even if the structure
- of the explanatory variables is the same in each of the sectors, so that M_ = M for
all sand ¢, = M, equation (2.12) gives the sample-weighted average of the B,
which is mcons1stent unless the sample is a simple random sample with equal
probabilities of selection in all sectors.

The inconsistency of the OLS estimator for the population parameters mirrors
the inconsistency of the unweighted mean for the population mean. Consider then
the regression counterpart of the weighted mean, in which each household’s
contribution to the moment matrices is inflated using the weights,

§ B -1
2.13) Bw [ )ID) w“xuxu) E Z WX, Vi

s=1i=1 s=1i=1
where x,_is the vector of explanatory variables for household i in sector s, and y,,
isthe correspondmg value of the dependent variable. In this case, the weightsare N /n_
and vary only across sectors, so that the estimator can also be written as

s
(2.14) B, =( Eﬂxx'x.) (Z — X, ] (X'WX)'X'Wy
s=t B
where X and y have their usual regression connotations—the X_and y  matrices
from each sector stacked vertically—and W is an nxn matrix with the weights
N /n_ on the diagonal and zeros elsewhere. This is the weighted regression that is
calculated by regression packages, including STATA.
If we calculate the probability limits as before, we get instead of (2.12)

S N Ts N
2.15 i = - s

(2.15) plimf,, [El NM"] r):i NM[)

so that, where we previously had sample shares as weights, we now have popu-
lation shares. The weighted estimator thus has the (perhaps limited) advantage
over the OLS estimator of being independent of sample design; the right-hand side
of (2.15) contains only population magnitudes. Like the OLS estimator it is consis-
tent if all the B are identical, and unlike it, will also be consistent if the M, mat-
rices are 1dent1cal across sectors. We have already seen one such case; when there
is only a constant in the regression, M, =1 for all 5, and we are estimating the
population mean, where weighting gives the right answer. But it is hard to think
of other realistic examples in which the M, are common and the c_ differ. In gen-
eral, the weighted estimator will not be consxstent for the welghted sum of the
parameter vectors because
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(2.16)
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):(NS/N)Ms) Y (NJN)c, # E(N INYM; c = E(N IN)B, = B.
s=1 s=1 s=1

In this case, which is probably the typical one, there is no straightforward analogy
between the estimation of means and the estimation of regression parameters. The
weighted estimator, like the OLS estimator, is inconsistent.

As emphasized by Dumouchel and Duncan (1983), the weighted OLS estimator
will be consistent for the parameters that would have been estimated using census
data; as usual, the weighting makes the sample look like the population and re-
moves the dependence of the estimates on the sample design, at least when sam-
ples are large enough. However, the difference in parameter values across strata is
a feature of the population, not of the sample design, so that running a regression
on census data is no less problematic than running it on sample data. In neither
case can we expect to recover parameters of interest. The issue is not sample
design, but population heterogeneity. Of course, if the population is homoge-
neous, so that the regression coefficients are identical in each stratum, both
weighted and unweighted estimators will be consistent. In such a case, and in the
absence of other problems, the unweighted OLS estimator is to be preferred since,
by the Gauss-Markov theorem, least squares is more efficient than the weighted
estimator. This is the classic econometric argument against the weighted estima-
tor: when the sectors are homogeneous, OLS is more efficient, and when they are
not, both estimators are inconsistent. In neither case is there an argument for
weighting.

Even so, it is possible to defend the weighted estimator. I present one argu-
ment that is consistent with the modeling point of view, and one that is not. Sup-
pose that there are many sectors, that we suspect heterogeneity, but the heteroge-
neity is not systematically linked to the other variables. Consider again the proba-
bility limit of the weighted estimator, (2.15), substitute ¢, =M, Bx, and write

B, =B +(B,-P) toreach
N -1
2.17) pllmﬁw = p +[ by (N‘/N) M‘T] ) (N‘/N)M‘(Bv_ﬁ)
s=1 s=1
The weighted estimate will therefore be consistent for f if

s
(2.18) L (NJNYMB,-B) =
s=1

This will be the case if the variation in the parameters across sectors is random
and is unrelated to the moment matrices M in each, and if the number of sectors
is large enough for the weighted mean to be zero. The same kind of argument is
much harder to make for the unweighted (OLS) estimator. The orthogonality con-
dition (2.18) is a condition on the population, while the corresponding condition
for the OLS estimator would have to hold for the sample, so that the estimator
would (at best) be consistent for only some sampling schemes. Even then, its
probability limit would not be B but the sample-weighted mean of the sector-
specific B, a quantity that is unlikely to be of interest.
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Perhaps the strongest argument for weighted regression comes from those who
regard regression as descriptive, not structural. The case has been put forcefully
by Kish and Frankel (1974), who argue that regression should be thought of as a
device for summarizing characteristics of the population, heterogeneity and all, so
that samples ought to be weighted and regressions calculated according to (2.13)
or (2.14). A weighted regression provides a consistent estimate of the population
regression function—provided of course that the assumption about functional
form (in this case that it is linear) is correct. The argument is effectively that the
regression function itself is the object of interest. I shall argue in the next chapter
that this is frequently the case, both for the light that the regression function
sometimes sheds on policy, and when not, as a preliminary description of the
data. Of course, if we are trying to estimate behavioral models, and if those mod-
els are different in different parts of the population, the classic econometric argu-
ment is correct, and weighting is at best useless.

Recommendations for practice

How then should we proceed? Should the weights be ignored, or should we use
them in the regressions? What about standard errors? If regressions are primarily
descriptive, exploring association by looking at the mean of one variable condi-
tional on others, the answer is straightforward: use the weights and correct the
standard errors for the design. For modelers who are concerned about heterogene-
ity and its interaction with sample design, matters are somewhat more compli-
cated.

For descriptive purposes, the only issue that I have not dealt with is the com-
putation of standard errors. In principle, the techniques of Section 1.4 can be used
to give explicit formulas that take into account the effect of survey design on the
variance-covariance matrices of parameter estimates. At the time of writing, such
formulas are being incorporated into STATA. Alternatively, the bootstrap provides
a computationally intensive but essentially mechanical way of calculating stand-
ard errors, or at least for checking that the standard errors given by the conven-
tional formulas are not misleading. As in Section 1.4, the bootstrap should be pro-
grammed so as to reflect the sample design: different strata should be bootstrap-
ped separately and, for two-stage samples, bootstrap draws should be made of
clusters or primary sampling units (PSUs), not of the households within them,
Because hypothetical replications of the survey throw up new households at each
replication, with new values of x’s as well as y’s, the bootstrap should do the
same. In this context, it makes no sense to condition on the original x’s, holding
them fixed in repeated samples. Instead, each bootstrap sample will contain a
resampling of households, with their associated x’s, y’s, and weights w’s, and
these are used to compute each bootstrap regression.

In practice, the design feature that usually has the largest effect on standard
errors is clustering, and the most serious problem with the conventional formulas
is that they overstate precision by ignoring the dependence of observations within
the same PSU. We have already seen this phenomenon for estimation of the mean
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in Section 1.4, and it is sufficiently important that I shall return to it in Section 2.2
below. It is as much an issue for structural estimation as it is for the use of regres-
sions as descriptive tools.

The regression modeler has a number of different strategies for dealing with
heterogeneity and design. At one extreme is what might be called the standard
approach. Behavior is assumed to be homogeneous across (statistical or substan-
tive) subunits, the data are pooled, and the weights ignored. The other extreme is
to break up the sample into cells whenever behavior is thought likely to differ or
where the sampling weights differ across groups. Separate regressions are then
estimated for each cell and the results combined using population weights accord-
ing to (2.8). When the distinctions between groups are of substantive interest—as
will often be the case, since regions, sectors, or ethnic characteristics are often
used for stratification—it makes sense to test for differences between them using
covariance analysis, as described, for example, by Johnston (1972, pp. 192-207).

When adopting the standard approach, it is also wise to adopt Dumouchel and
Duncan’s suggestion of calculating both weighted and unweighted estimators and
comparing them. Under the null that the regressions are homogeneous across
strata, both estimators are unbiased, so that the difference between them has an
expectation of zero. By contrast, when heterogeneity and design effects are im-
portant, the two expectations will differ. The difference between the weighted
estimator (2.13) and the OLS estimator can be written as

B, - Bors = X'WX) ' X'Wy - X%)Xy
(2.19) = (X'WX)'XWUI-XX'X)"'X)y
= X'WX)'X'WM,y

where M, is the matrix /-X (X X)"'X". By (2.19) the difference between the two
estimators is the vector of parameter estimates from a weighted regression of the
unweighted OLS residuals on the x's. Its variance-covariance matrix can readily be
calculated in order to form a test statistic, but the easiest way to test whether
(2.19) is zero is to run the “auxiliary” regression

(2.20) y = Xb+WXg+v

and to use an F-statistic to test g = 0 (see also Davidson and MacKinnon 1993.
pp- 237-42, who discuss Hausman (1978) tests, of which this is a special case).

In the case of many sectors, when we rely on the interpretation that the inter-
sectoral heterogeneity is random variation in the parameters as in (2.17) above,
note that the residuals of the regressions, whether weighted or unweighted, will be
both heteroskedastic and dependent. Rewrite the regressions (2.6) as

(2.21) Yy = X, B+XB,-P)+u, =XP+E

where [ is defined in (2.7) and where the compound residual £_ is defined by the
second equality. If the intrasectoral variance-covariance matrix of the B_ is Qﬁ,
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the variances and covariances of the new residuals are zero between residuals in
different sectors, while within each sector we have

(2.22) EEE) = X, QX+ 0],

where | n, is the n xn_ identity matrix. Hence, if the different sectors in (2.21) are
combined, or “stacked,” into a single regression, the variance-covariance matrix
of the residuals will have a block diagonal structure, displaying both heteroske-
dasticity and intercorrelation. In such circumstances, neither the weighted nor
unweighted regressions will be efficient, and perhaps more seriously, the standard
formulas for the estimated standard errors will be incorrect. In the next two sec-
tions, we shall see how to detect and deal with these problems in a slightly differ-
ent but mathematically identical context.

2.2 The econometrics of clustered samples

In Chapter 1, we saw that most household surveys in developing countries use a
two-stage design, in which clusters or PSUs are drawn first, followed by a selec-
tion of households from within each pPSU. In Section 1.4, I explored the conse-
quences of clustered designs for the estimation of means and their standard errors.
Here I discuss the use of clusters in empirical work more broadly. When the sur-
vey data are gathered from rural areas in developing countries, the clustering is
often of substantive interest in its own right. I begin with some of these positive
aspects of clustered sampling, and then discuss its effects on inference in regres-
sion analysis.

The economics of clusters in developing countries

In surveys of rural areas in developing countries, clusters are often villages, so
that households in a single cluster live near one another, and are interviewed at
much the same time during the period that the survey team is in the village. In
many countries, these arrangements will produce household data where obser-
vations from the same cluster are much more like one another than are observa-
tions from different clusters. At the simplest, there may be neighborhood effects,
so that local eccentricities are copied by those who live near one another and be-
come more or less uniform within a village. Sample villages are often widely
separated geographically, their inhabitants may belong to different ethnic and
religious groups, they may have distinct occupational structures as well as differ-
ent crops and cropping patterns. Where agriculture is important—as it is in most
poor countries—there will usually be more homogeneity within villages than bet-
ween them. This applies not only to the types of crops and livestock, but also to
the effects of weather, pests, and natural hazards. If the rains fail for a particular
village, everyone engaged in rainfed agriculture will suffer, as will those in occu-
pations that depend on rainfed agriculture. If the harvest is good, prices will be
low for everyone in the village, and although the effects will spread out to other
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villages through the market, poor transport networks and high transport costs may
limit the spread of low prices to other survey villages. Indeed, there is often only
one market in each village, so that everyone in the village will be paying the same
prices for what they buy, and will be facing the same prices for their wage labor,
their produce, and their livestock. This fact alone is likely to induce a good deal
of similarity between households within a given sample cluster.

Cluster similarity has both costs and benefits. The cost is that inference is sim-
plest when all the observations in the sample are independent, and that a positive
correlation between observations not only makes calculations more complex, but
also inflates variance above what it would have been in the independent case. In
the extreme case, when all villagers are clones of one another, we need sample
only one of them, and if the sample contains more than one person from each
village, the effective sample size is the number of villages not the number of
villagers. This argument applies just as much to regressions, and to other types of
inference, as it does to the estimation of means.

The benefit of cluster sampling comes from the fact that the clusters are vill-
ages, and as such are often economically interesting in their own right. For many
purposes it makes sense to examine what happens within each village in a differ-
ent way from what happens between villages. In addition, cluster sampling gives
us multiple observations from the same environment, so that we can sometimes
control for unobservables in ways that would not otherwise be possible. One
important example is the effects of prices, a topic to which I shall return in Chap-
ter 5. Often, we do not observe prices directly, and since prices in each village
will typically be correlated with other village variables such as incomes or agri-
cultural production, it is impossible to estimate the effects of these observables
uncontaminated by the effects of the unobservable prices. However, if we are
prepared to maintain that prices have additive effects on the variable in which we
are interested, differences between households within a village are unaffected by
prices, and can be used to make inferences that are robust to the lack of price
data. In this way the village structure of samples can be turned to advantage.

Estimating regressions from clustered samples

If the cluster design of the data is ignored, standard formulas for variances of
estimated means are too small, a result which applies in essentially the same way
to the formulas for the variance-covariance matrices of regression parameters esti-
mated by OLS. At the very least then, we require some procedure for correcting
the estimated standard errors of the least squares regression. There is also an
efficiency issue; because the error terms in the regressions are correlated across
observations, OLS regression is not efficient even within the class of linear estima-
tors and it might be possible to do better with some other linear estimator. (Effi-
ciency is also a potential issue for the sample mean, though I did not discuss it in
Section 1.4.)

The simplest example with which to begin is where the cluster design is bal-
anced, so that there are m households in each cluster, and where the explanatory
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variables vary only between clusters, and not within them. This will be the case,
for example, when we are studying the effects of prices on behavior and there is
only one market in each village, or when the explanatory variables are govern-
ment services, like schools or clinics, where access is the same for everyone in the
same village. I follow the discussion in Section 1.4 on the superpopulation ap-
proach to clustering and write the regression equation for household i in cluster ¢
[compare (1.64)],

(223) yic = xcfﬂ + ac + eic = xc/ﬁ + ul’c

so that the x’s are common to all households in the cluster, and the regression
error term u,, is the sum of a cluster component o and an individual component €, .
Both components have mean 0, and their covariance structure can be derived
from the assumption that the ’s are uncorrelated across clusters, and the €’s both
within and across clusters. Hence,

2y _ 42 _ 2 2
E(u;) = 0° = 0,+0,

2 o e
(2.24) E(uup) = 0, = | —— o’ = pa?, i#j
OG+OE
E(uicujc/) =0, c*c’.

Within the cluster, the errors are equicorrelated with intracluster correlation coef-
ficient p, but between clusters, they are uncorrelated.

This case has been analyzed by Kloek (1981), who shows that the special
structure implies that the OLS estimator and the generalized least squares estimator
are identical, so that OLS is fully efficient. Further, the true variance-covariance
matrix of the OLS estimator—as well as of the generalized least squares (GLS) esti-
mator—is given by

(2.25) V(B) = *(XX)'[1 +(m-1)p]

so that, just as in estimating the variance of the mean, the variance has to be scal-
ed up by the design effect, a factor that varies from 1 to m, depending on the size
of p.

As before, ignoring the cluster design will lead to standard errors that are too
. small, and t-values that are too large. There is also a (lesser) problem with
estimating the regression standard error 2. If N is the sample size—the number
of clusters n multiplied by m, the number of observations in each—and k is the
number of regressors, the standard formula (N-k) ' e ’e is no longer unbiased for a2,
although it remains consistent provided the cluster size remains fixed as the sam-
ple size expands. Kloek shows that an unbiased estimator can be calculated from
the design effectd = 1 + (m-1)p using the formula

(2.26) o2 = e'e(N - kd)™.
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Moulton (1986, 1990) provides a number of examples of potential underesti-
mation of standard errors in this case, some of which are dramatic. For example,
in an individual wage equation for the U.S. with only state-level explanatory vari-
ables, the design effect is more than 10; here a small but significant intrastate
correlation coefficient, 0.028, is combined with very large cluster sizes, nearly
400 observations per state. In this case, ignoring the correction to (2.25) would
understate standard errors by a factor of more than three.

That this is likely to be the worst case is shown in papers by Scott and Holt
(1982) and Pfefferman and Smith (1985). They show that when the explanatory
variables differ within clusters, (2.25)—or when there are unequal numbers of
observations in each cluster, (2.25) with the size of the largest cluster replacing
m—provides an upper bound for the true variance-covariance matrix, and that in
most cases, the bound is not tight. They also show that, although the OLS estima-
tor is inefficient when the explanatory variables are not constant within clusters,
the efficiency losses are typically small. These results are comforting because
they provide a justification for using OLS, and a means of assessing the maximal
extent to which the design effects are biasing standard errors. Even so, the biases
might still be large enough to worry about, and to warrant correction.

One obvious possibility is to estimate by OLS, use the residuals to estimate &2
from (2.26)—or even from the standard formula—as well as an estimate of the
intracluster correlation coefficient

S5 Tee
.27 _ oesljslkn
nm(m-1)62

and then to estimate the variance-covariance matrix using
(2.28) V(B) = XXX AXX'X)™!

where A is a block-diagonal matrix with one block for each cluster, and where
each block has a unit diagonal and a {§ in each off-diagonal position. An alterna-
tive and more robust procedure is to use the OLS residuals from each cluster e to
form the cluster matrices f}c according to

(2.29) 2 =ee

and then to place these matrices on the diagonal of A in (2.28). This is equivalent
to calculating the variance-covariance matrix using

(2.30) vB) = (X’X)"(E:Xc/ecec/Xc)(X’X)".
c=1

Provided that the cluster size remains fixed as the sample size becomes large—
which is usually the case in practice—(2.30) will provide a consistent estimate of
the variance-covariance matrix of the OLS estimator, and will do so even if the
error variances differ across clusters, and even in the face of arbitrary correlation



ECONOMETRIC ISSUES FOR SURVEY DATA 77

patterns within clusters (see White 1984, pp. 134-42.) In consequence, it can also
be applied to the case of heterogeneity within strata discussed in the previous
section; the strata are simply thought of as clusters, and the same analysis applied.
As we shall see in Section 2.4 below, the same procedures can also be applied to
the analysis of panel data where there are repeat observations on the same indivi-
duals—the individuals play the role of the village, and successive observations
play the role of the villagers (see also Arellano 1987).

Note that the consistency of (2.30) does not suppose (or require) that the )36
matrices in (2.29) are consistent estimates of the cluster variance-covariance ma-
trices; indeed it is clearly impossible to estimate these matrices consistently from
a single realization of the cluster residuals. Nevertheless, (2.30) is consistent for
the variance-covariance matrix of the parameters, and will presumably be more
accurate in finite samples the more clusters there are, and the smaller is the cluster
size relative to the number of clusters. Although (2.30) will typically require spe-
cial coding or software, it is implemented in STATA as the option “group” in the
“huber” or “hreg” command.

Table 2.1 shows the effects of correcting the standard errors of “quality
choice” regressions using data on the unit values—expenditures divided by quan-
tities bought—of consumer purchases from the Pakistan Household Income and
Expenditure Survey of 1984—85. The substantive issue here is that, because dif-
ferent households buy different qualities of goods, even within categories such as
rice and wheat, unit values vary systematically over households, with richer
households reporting higher values.

The OLS estimates of the expenditure elasticity of the unit values—what Prais
and Houthakker (1955) christened “quality” elasticities—are given in the first
column, and we see that there are quality elasticities of 0.13 for wheat and rice,
while for the other two goods, which are relatively homegeneous and whose
prices are supposedly controlled, the elasticities are small or even negative.
Household size elasticities are the opposite sign to total expenditure elasticities, as
would be the case (for example) if quality depended on household expenditure
per head. Except for sugar, the size elasticities are all smaller in absolute value
than the expenditure elasticities, so that, at constant per capita expenditure, unit
values rise with household size, an effect that Prais and Houthakker attributed to
economies of scale to household size. At the same level of per capita total ex-

Table 2.1. Effects of cluster design on regression ¢-values, rural Pakistan,
1984-85

Expenditure t-value Size t-value
Good elasticity Raw Robust  elasticity Raw Robust
Wheat 0.128 20.2 18.4 -0.070 -10.5 -9.0
Rice 0.129 12.2 8.7 -0.074 -6.9 -54
Sugar 0.005 3.1 1.5 -0.009 -5.2 -3.7
Edible oils -0.004 -3.0 -19 0.002 1.6 1.2

Note: Underlying regression has the logarithm of unit value as the dependent variable, and the logarithms
of household total expenditure and of household size as independent variables.
Source: Author’s calculations using the Household Income and Expenditure Survey.
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penditure, larger households are better-off than smaller households and, in con-
sequence, buy better-quality foods. The robust t-values are smaller than the
uncorrected values, although as suggested by the theoretical results, the ratios of
the adjusted to unadjusted values are a good deal smaller than the (square roots of
the) design effects. Even so, the reductions in the z-values for the estimated qua-
lity elasticities for sugar and edible oils are substantial. Without correction, we
would almost certainly (mistakenly) reject the hypothesis that the quality elastici-
ties for these two goods are zero; after correction, the ¢z-values come within the
range of acceptance.

2.3 Heteroskedasticity and quantile regressions

As we shall see in the next chapter, when we come to look at the distributions
over households of the various components of living standards—income, con-
sumption of various goods and their aggregate—it is rare to find variables that are
normally distributed, even after standard transformations like taking logarithms or
forming ratios. The large numbers of observations in many surveys permit us to
look at the distributional assumptions that go into standard regression analysis,
and even after transformation it is rarely possible to justify the textbook assump-
tions that, conditional on the independent variables, the dependent variables are
independently, identically, and normally distributed. The previous section dis-
cussed how a cluster survey design is likely to lead to a violation of conditional
independence. In this section, I turn to the “identically distributed” assumption,
and consider the consequences of heteroskedasticity. Just as lack of independence
appears to be the rule rather than the exception, so does heteroskedasticity seem
to be almost always present in survey data.

The first subsection looks at linear regression models, at the reasons for het-
eroskedasticity, and at its consequences. I suggest that the computation of quan-
tile regressions is useful, both in its own right, because quantile regression esti-
mates will often have better properties than OLS, as a way of assessing the hetero-
skedasticity in the conditional distribution of the variable of interest, and as a
stepping stone to the nonparametric methods discussed in the next two chapters.
As was the case for clustering, a consequence of heteroskedasticity in regression
analysis is to invalidate the usual formulas for the calculation of standard errors,
and as with clustering, there exists a straightforward correction procedure.

Matters are much less simple when we move from regressions to models with
limited dependent variables. In regression analysis, the estimation of scale param-
eters can be separated from the estimation of location parameters, but the separa-
tion breaks down in probits, logits, Tobits, and in sample selectivity models. I
illustrate some of the difficulties using the Tobit model, and provide a simple but
realistic example of censoring at zero where the application of maximum-likeli-
hood Tobit techniques—something that is nowadays quite routine in the develop-
ment literature—can lead to estimates that are no better than OLS. There are cur-
rently no straightforward solutions to these difficulties, but I review some of the
options and make some suggestions for practice.
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Heteroskedasticity in regression analysis

It is a fact that regression functions estimated from survey data are typically not
homoskedastic. Why this should be is of secondary importance; indeed it is just as
reasonable to ask why it should be supposed that conditional expectations should
be homoskedastic. Nevertheless, we have already seen in Section 2.1 above that
even when individual behavior generates homoskedastic regression functions
within strata or villages, but there is heterogeneity between villages, there will be
heteroskedasticity in the overall regression function. Similar results apply to het-
erogeneity at the individual level. If the response coefficients B differ by house-
hold, and we treat them as random, we may write

2.31) E(ylx.B) = Bix; V(ylx,B) = o

Suppose that the B, have mean f and variance-covariance matrix €, then (2.31)
generates the heteroskedastic regression model

(2.32) E(yl\x,) = B'x; V(y,lx) = o® +xQx,.

Models like (2.32) motivate the standard test procedures for heteroskedasticity
such as the Breusch-Pagan (1979) test, or White’s (1980) information matrix test
(see also Chesher 1984 for the link with individual heterogeneity.) The Breusch-
Pagan test is particularly straightforward to implement. The OLS residuals from
the regression with suspected heteroskedasticity are first normalized by division
by the estimated standard error of the equation. Their squares are then regressed
on the variables thought to be generating the heteroskedasticity—if (2.32) is
correct, these should include the original x-variables, their squares, and cross-pro-
ducts—and half the explained sum of squares tested against the x? distribution
with degrees of freedom equal to the number of variables in this supplementary
regression.

In the presence of heteroskedasticity, OLS is inefficient and the usual formulas
for standard errors are incorrect. In cases where efficiency is not a prime concern,
we may nevertheless want to use the OLS estimates, but to correct the standard
errors. This can be done exactly as in (2.30) above, a formula that is robust to the
presence of both heteroskedasticity and cluster effects. If there are no clusters,
(2.30) can be applied by treating each household as its own cluster so that there
are no cross-effects within clusters and the formula can be written

(2.33) V() = X0 (Telxx)X%)

where x; is the column vector of explanatory variables for household i and e,.2 is
the squared residual from the OLS regression. This formula, which comes origin-
ally from Eicker (1967) and Huber (1967), was introduced into econometrics by
White (1980). Its performance in finite samples can be improved by a number of
possible corrections; the simplest requires that e,.2 in (2.33) be multiplied by
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(n-k)"'n, where k is the number of regressors and n the sample size, see David-
son and MacKinnon (1993, 552-56.) In practice, the heteroskedasticity correction
to the variance-covariance matrix (2.33) is usually quantitatively less important
than the correction for intracluster correlations, (2.30).

Quantile regressions

The presence of heteroskedasticity can be conveniently analyzed and displayed by
estimating quantile regressions following the original proposals by Koenker and
Bassett (1978, 1982). To see how these work, it is convenient to start from the
standard homoskedastic regression model.

Figure 2.1 illustrates quantiles in the (standard) case where heteroskedasticity
is absent. The regression line o +Px is the expectation of y conditional on x, and
the three “humped” curves schematically illustrate the conditional densities of the
errors given x; in principle, these densities should rise perpendicularly from the
page. For each value of x, consider a process whereby we mark the percentiles of
the conditional distribution, and then connect up the same percentiles for different
values of x. If the distribution of errors is symmetrical, as shown in Figure 2.1, the
conditional mean, or regression function, will be at the 50th percentile or median,
so that joining up the conditional medians simply reproduces the regression. When
the distribution of errors is also homoskedastic, the percentiles will always be at
the same distance from the median, no matter what the value of x. Figure 2.1
shows the lines formed by joining the points corresponding to the 10th and 90th

Figure 2.1. Schematic figure of a homoskedastic linear regression function

90th percentile

Note: The solid line shows the regression function of y on x, assumed to be linear. The broken lines
show the 10th and 90th percentiles of the distribution of y conditional on x.
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percentiles of the conditional distributions. Because the regression is homoske-
dastic, these are straight lines that are parallel to, and equidistant from, the regres-
sion line.

When regressions are heteroskedastic, or when the errors are asymmetric,
marking and joining up percentiles will give quite different results. If the residuals
are symmetric but heteroskedastic, the distance of each percentile from the regres-
sion line will be different at different values of x. Joining up the percentiles for
different values of x will not necessarily lead to straight lines or to any other sim-
ple curve. However, we can still fit straight lines to the percentiles, and it is this
that is accomplished by quantile regression. If the heteroskedasticity is linked to
the value of x, with the distribution of residuals becoming more or less dispersed
as x becomes larger, then the quantile regressions for percentiles other than the
median will no longer be parallel to the regression line, but will diverge from it (or
converge to it) for larger values of x.

Figure 2.2 illustrates using a food Engel curve for the rural data from the
198485 Household Income and Expenditure Survey of Pakistan, Previous experi-
ence has shown that the budget share devoted to food can often be well approxi-
mated as a linear function of the logarithm of household expenditure per capita, as
first proposed by Working (1943). The points in the figure are a 10 percent ran-
dom sample of the 9,119 households in the survey whose logarithm of per capita
expenditure lies between 3 and 8; a small number of households at the extremes of
the distribution are thereby excluded from the figure, but not from the calcula-

Figure 2.2. Scatter diagram and quantile regressions for food share
and total expenditure, Pakistan, 1984-85
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Note: The scatter as shown is a ten percent random sample of the points used in the regressions. The
regression lines shown were obtained using the “qreg” command in STATA and correspond to the 10th,
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tions. The three lines in the figure are the quantile regressions corresponding to
the 10th, 50th, and 90th percentiles of the distribution of the food share condi-
tional on the logarithm of household expenditure per head; these were calculated
using all 9,119 households. The procedures for estimating these regressions,
calculated using the “qreg” command in STATA, are discussed in the technical
note that follows, but the principle should be clear from the foregoing discussion.

The slopes of the three lines differ; the median regression (50th percentile) has
a slope of —0.094 (the OLS slope is -0.091), while the lower line has slope —0.121,
and the upper -0.054. These differences and the widening spread between the
lines as we move to the right show the increase in the conditional variance of the
regression among better-off households; the 10th and 90th percentiles of the con-
ditional distribution are much further apart among richer than poorer households.
Those with more to spend in total devote a good deal less of their budgets to food,
but there is also more dispersion of tastes among them.

Quantile regressions are not only useful for discovering heteroskedasticity. By
calculating regressions for different quantiles, it is possible to explore the shape
of the conditional distribution, something that is often of interest in its own right,
even when heteroskedasticity is not the immediate cause for concern. A very
simple example is shown in Figure 2.3, which illustrates age profiles of earnings
for black and white workers from the 1993 South African Living Standards Sur-
vey. Earnings are monthly earnings in the “regular” sector, and the graphs use

Figure 2.3. Quantile regressions of the logarithm of earnings on age by race,

South Africa, 1993
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only data for those workers who report such earnings. The two panels show the
quantile regressions of the logarithm of earnings on age and age squared for the
10th, 50th, and 90th percentiles for Black and White workers separately. The use
of a quadratic in age restricts the shapes of the profiles, but allows them to differ
by race and by percentile, as in fact they do. The curves show not only the vast
differences in earnings between Blacks and Whites—a difference in logarithms of
1 is a ratio difference of more than 2.7—but also that the shapes of the age pro-
files are different. Those whose earnings are at the top within their age group are
the more highly-educated workers in more highly-skilled jobs, and because the
human capital required for these jobs takes time to accumulate, the profile at the
90th percentile for whites has a stronger hump-shape than do the profiles for the
50th and 10th percentiles. There is no corresponding phenomenon for Blacks,
presumably because, in South Africa in 1993, even the most able Blacks are res-
tricted in their access to education and to high-skill jobs. These graphs and the
underlying regressions do not tell us anything about the causal processes that
generate the differences, but they present the data in an interesting way that can
be suggestive of ideas for a deeper investigation (see Mwabu and Schultz 1995
for more formal analysis of earnings in South Africa, Mwabu and Schultz 1996
for a use of quantile regression in the same context, and Buchinsky 1994 for the
use of quantile regressions to describe the wage structure in the U.S.)

There are also arguments for preferring the parameters of the median regres-
sion to those from the OLS regression. Even given the Gauss-Markov assumptions
of homoskedasticity and independence, least squares is only efficient within the
(restrictive) class of linear, unbiased estimators, although if the conditional distri-
bution is normal, OLS will be minimum variance among the broader class of all
unbiased estimators. When the distribution of residuals is not normal, there will
usually exist nonlinear (and/or biased) estimators that are more efficient than OLs,
and quantile regressions will sometimes be among them. In pamcular the median
regression is more resistant to outliers than is OLS, a major advantage in working
with large-scale survey data.

*Technical note: calculating quantile regressions

In the past, the applicability of quantile regression techniques has been limited,
not because they are inherently unattractive, but by computational difficulties.
These have now been resolved. Just as in calculating the median itself, median
regression can be defined by minimizing the absolute sum of the errors rather
than, as in least squares, by minimizing the sum of their squares. It is thus also
known as the LAD estimator, for Least Absolute Deviations. Hence, the median
regression coefficients can be obtained by minimizing ¢ given by

(2.34) ¢ = >n3ly,~~x,~'l3l = )%(yi-x.-'ﬁ)sgn(y,--x.-'ﬁ)
i=1 i=

where sgn(a) is the sign of a, 1 if a is positive, and -1 if a is negative or zero. (I
have reverted to the standard use of n for the sample size, since there is no longer
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a need to separate the number of clusters from the total number of observations.)
The intuition for why (2.34) works comes from thinking about the first-order con-
dition that is satisfied by the parameters that minimize (2.34), which is, for
ji=1,.. .k n
(2.35) E xsgn(y, - xB) = 0.

i=

Note first that if there is only a constant in the regression, (2.35) says that the con-
stant should be chosen so that there are an equal number of points on either side
of it, which defines the median. Second, note the similarity between (2.35) and
the OLS first-order conditions, which are identical except for the “sgn” function;
in median regression, it is only the sign of each residual that counts, whereas in
OLS it is its magnitude.

Quantile regressions other than median can be defined by minimizing, not
(2.34), but

~(1-9) T 0;-xB+q T 0,;-xB)

ysxp y>x'p

_)_:1 [g-1Cy,s By, - x/B)

P,
2.36)

where 0<g<1 is the quantile of interest, and the value of the function 1(z) signals
the truth (1) or otherwise (0) of the statement z. The minimization condition
corresponding to (2.35) is now

2.37) Exlg - 10,5 X1 =0

which is clearly equivalent to (2.35) when g is a half. Once again, note that if the
regression contains only a constant term, the constant is set so that 100g percent
of the sample points are below it, and 100(1 - ¢g) percent above.

The computation of quantile estimators is eased by the recognition that the
minimization of (2.36) can be accomplished by linear programming, so that even
for large data sets, the calculations are not burdensome. The same cannot be said
for the estimation of the variance-covariance matrix of the parameter estimates.
When the residuals are homoskedastic, there is an asymptotic formula provided
by Koenker and Bassett (1982) that gives the variance-covariance matrix of the
parameters as the usual (X’X)™! matrix scaled by a quantity that depends (in-
versely) on the density of the errors at the quantiles of interest. Estimation of this
density is not straightforward, but more seriously, the formula appears to give
very poor results—typically gross underestimation of standard errors—in the
presence of heteroskedasticity, which is often the reason for using quantile reg-
ression in the first place!

It is therefore important to use some other method for estimating standard
errors, such as the bootstrap, a version of which is implemented in the “bsqreg”
command in STATA, whose manual, Stata Corporation (1993, Vol. 3, 96-106)
provides a useful description of quantile regressions in general. (Note that the
STATA version does not allow for clustering but it is straightforward, if time-con-
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suming, to bootstrap quantile regressions using the clustered bootstrap illustrated
in Example 1.3 in the Code Appendix.)

Heteroskedasticity and limited dependent variable models

In regression analysis, the presence of heteroskedasticity and nonnormality is
problematic because of potential efficiency losses, and because of the need to
correct the usual formulas for standard errors. However, regression analysis is
somewhat of a special case because the estimation of parameters of location—the
conditional mean or conditional median—is independent of the estimation of
scale—the dispersion around the conditional location. In limited dependent vari-
able models, scale and location are intimately bound together, and as a result,
misspecification of scale can lead to inconsistency in estimates of location.

Probit and logit models provide perhaps the clearest examples of the difficul-
ties that arise. There is a dependent variable y, which is either 1 or 0 according to
whether or not an unobserved or latent variable y,” is positive or nonpositive. The
latent variable is defined by analogy to a regression model,

(2.38) ¥ =fO) +u, E@)=0, E@)=0[g(z)]

where x and z are vectors of variables controlling the “regression” and the “hete-
roskedasticity” respectively, and £ (.) and g (.) are functions, the former usually
assumed to be known, the latter unknown. Suppose that F(.) is the cumulative
distribution function (CDF) of the standardized residual u,/0g(z,), and that F(.)
is symmetric around O so that F(a) = 1 - F(-a), then

(2.39) p; = Prob(y;=1) = F[ f(x;)/0g(z)].

If we know the function F(.), which is in itself assuming a great deal, then given
data on y, x, and z, the model gives no more information on which to base estima-
tion than is contained in the probabilities (2.39). But by inspection of (2.39) it is
immediately clear that it is not possible to separate the “heteroskedasticity” func-
tion g(z) from the “regression” function f( x). For example, suppose that f( x)
has the standard linear specification x’B, that the elements of z are the same as
those of x, and that it so happens that g(z) = g(x) =x’B/x’y. Then the applica-
tion of maximum-likelihood estimation (MLE) will yield estimates that are con-
sistent, not for B, but for y! The latent-variable or regression approach to dicho-
tomous models can be misleading if we treat it too seriously; we observe 1’s or
0’s, and we can use them to model the probabilities, but that is all.

The point of the previous paragraph is so obvious and so well understood that
it is hardly of practical importance; the confounding of heteroskedasticity and
“structure” is unlikely to lead to problems of interpretation. It is standard proce-
dure in estimating dichotomous models to set the variance in (2.38) to be unity,
and since it is clear that all that can be estimated is the effects of the covariates on
the probability, it will usually be of no importance whether the mechanism works
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through the mean or the variance of the latent “regression” (2.38). While it is
correct to say that probit or logit is inconsistent under heteroskedasticity, the
inconsistency would only be a problem if the parameters of the function f were
the parameters of interest. These parameters are identified only by the homoske-
dasticity assumption, so that the inconsistency result is both trivial and obvious.
(It is perhaps worth noting that STATA has “hlogit” and “hprobit” commands for
logit and probit that match the “hreg” command for regression, But these should
not be used to correct standard errors in logit and probit; rather they should be
used to correct standard errors for clustering, so that the analogy is with (2.30),
not (2.33).)

Related but more serious difficulties occur with heteroskedasticity when ana-
lyzing censored regression models, truncated regressions, or regressions with se-
lectivity, where the inconsistencies are a good deal more troublesome. I illustrate
using the censored regression model, or Tobit—after Tobin’s (1958) probit—
because the model is directly relevant to the analysis in later chapters, and be-
cause the technique is widely used in the development literature. Consider in
particular the demand for a good, which can be purchased only in positive quanti-
ties. If there were no such restriction, we might postulate a linear regression of the
form
(2.40) yi = xBru.

When y," is positive, everything is as usual and actual demand Y, is equal to Vi
But negative values of yi* are “censored” and replaced by zero, the minimum
allowed. The model for the observed y; can thus be written as

(2.41) y; = max(0,x/B +u,).

I note in passing that the model can be derived more elegantly as in Heckman
(1974), who considers a labor supply example, and shows that (2.41) is consistent
with choice theory when hours worked cannot be negative.

The left-hand panel of Figure 2.4 shows a simulation of an example of a stand-
ard Tobit model. The latent variable is given by x, - 40 + u; with the x’s taking
the 100 values from 1 to 100, and the «’s randomly and independently drawn
from a normal distribution with mean zero and standard deviation 20. The small
circles on the graph show the resulting scatter of y, against x,. Because of the
censoring, which is more severe for low values of the explanatory variable, the
OLS regression line has a slope less than one; in 100 replications the OLS estimator
had a mean of 0.637 with a standard deviation of 0.055, so that the bias shown in
the figure for one particular realization is typical of this situation. A better method
is to follow Tobin, and maximize the log-likelihood function

InL = -ﬁ(lno +1n2m) - _L_Z(y,. - x/p)?
2 20%4,

(2.42) ) 21n[1 ) @( ﬁ)]

i g
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where n,_ is the number of strictly positive observations, i, and i; indicate that
the respective sums are taken over positive and zero observations, respectively,
and @ is the c.d.f. of the standard normal distribution. The first two terms on the
right-hand side of (2.42) are exactly those that would appear in the likelihood
function of a standard normal regression, and would be the only terms to appear
in the absence of censoring. The final term comes from the observations that are
censored to zero; for each such observation we do not observe the exact value of
the latent variable, only that it is zero or less, so that the contribution to the log
likelihood is the logarithm of the probability of that event. Estimates of § and o
are obtained by maximizing (2.42), a nonlinear problem whose solution is guar-
anteed by the fact the log-likelihood function is convex in the parameters, and so
has a unique maximum. This maximum-likelihood technique works well for the
left-hand panel of the figure; in the 100 replications, the Tobit estimates of the
slope averaged 1.009 with a standard deviation of 0.100. In this case, where the
normality assumption is correct, and the disturbances homoskedastic, maximum
likelihood overcomes the inconsistency of OLS.

That all will not be as well in the presence of heteroskedasticity can be seen
from the likelihood function (2.42) where the last term, which is the contribution
to the likelihood of the censored observations, contains both the scale and loca-
tion parameters. The standard noncensored likelihood function, which is (2.42)
without the last term, has the property that the derivatives of the log-likelihood
function with respect to the f3’s are independent of o, at least in expectation, and
vice versa, something that is not true for (2.42). This gives a precise meaning to
the notion that scale and location are independent in the regression model, but

Figure 2.4. Tobit models with and without heteroskedasticity
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dependent in these models with limited dependent variables. As a result of the
dependence, misspecification of scale will cause the ’s that maximize (2.42) to
be inconsistent for the true parameters, a result first noted by Hurd (1979), Nelson
(1981), and Arabmazar and Schmidt (1981).

The right-hand side of Figure 2.4 gives an illustration of the kind of problems
that can occur with heteroskedasticity. Instead of being homoskedastic as in the
left-hand panel, the ; are drawn from independent normal distributions with zero
means and standard deviations g, given by

(2.43) o, = 20(1 +0.2/max(0, 7,-40)).

According to this specification there is homoskedasticity to the left of the cutoff
point (40), but heteroskedasicity to its right, and the conditional variance grows
with the mean of the dependent variable beyond the cutoff. Although (2.43) does
not pretend to be based on any actual data, it mimics reasonable models of behav-
ior. Richer households have more scope for idiosyncracies of behavior than do the
poor, and as we see in the right-hand panel, we now get zero observations among
the rich as well as the poor, something that cannot occur in the homoskedastic
model. This is what happens in practice; if we look at the demand for tobacco,
alcohol, fee-paying schools or clinics, there are more nonconsumers among the
poor, but there are also many better-off households who choose not to purchase.
Not purchasing is partly a matter of income, and partly a matter of taste.

The figure shows three lines. The dots-and-dashes line to the left is the OLS
regression which is still biased downward; although the heteroskedasticity has
generated more very high y’s at high levels of x, the censoring at low values of x
keeps the OLS slope down. In the replications the OLS slope averaged 0.699 with a
standard deviation of 0.100; there is more variability than before, but the bias is
much the same. The second, middle (solid) line is the kinked line max(0, x -40)
which is (2.41) when all the u, are zero. (Note that this line is not the regression
function, which is defined as the expectation of y conditional on x.) The third line,
on the right of the picture, comes from maximizing the likelihood (2.42) under
the (false) assumption that the «'s are homoskedastic. Because the Tobit proce-
dure allows it to deal with censoring at low values of x, but provides it with no
explanation for censoring at high values of x, the line is biased upward in order to
pass through the center of the distribution on the right of the picture. The average
MLE (Tobit) estimate of the slope in the replications was 1.345 with a standard
error of 0.175, so that in the face of the heteroskedasticity, the Tobit procedure
yields estimates that are as biased up as OLS is biased down. It is certainly possi-
ble to construct examples where the Tobit estimators are better than least squares,
even in the presence of heteroskedasticity. But there is nothing odd about the cur-
rent example; heteroskedasticity will usually be present in practical applications,
and there is no general guarantee that the attempt to deal with censoring by re-
placing OLS with the Tobit MLE will give estimates that reduce the bias. This is
not a defense of OLS, but a warning against the supposition that Tobit guarantees
any improvement.
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In practice, the situation is worse than in this example. Even when there is no
heteroskedasticity, the consistency of the Tobit estimates requires that the distri-
bution of errors be normal, and biases can occur when it is not (see Goldberger
1983 and Arabmazar and Schmidt 1982). And since the distribution of the u’s is
almost always unknown, it is unclear how one might respecify the likelihood
function in order to do better. Even so, censored data occur frequently in practice,
and we need some method for estimating sensible models. There are two very dif-
ferent approaches; the first is to look for estimation strategies that are robust
against heteroskedasticity of the u’s in (2.41) and that require only weak assump-
tions about their distribution, while the second is more radical, and essentially
abandons the Tobit approach altogether. I begin with the former.

*Robust estimation of censored regression models

There are a number of different estimators that implement the first approach,
yielding nonparametric Tobit estimators—nonparametric referring to the distribu-
tion of the u’s, not to the functional form of the latent variable which remains
linear. None of these has yet passed into standard usage, and I review only one,
Powell’s (1984) censored LAD estimator. It is relatively easily implemented and
appears to work in practice. (An alternative is Powell’s (1986) symmetrically
trimmed least squares estimator.)

One of the most useful properties of quantiles is that they are preserved under
monotone transformations; for example, if we have a set of positive observations,
and we take logarithms, the median of the logarithms will be the logarithm of the
median of the untransformed data. Since max(0, z) is monotone nondecreasing in
z, we can take medians of (2.41) conditional on x; to get

(2.44) Gso(¥;1%) = max[0, gso(x/B +u;1x)] = max(0,x/p)

where g,(.1x) denotes the median of the distribution conditional on x and the
median of u, is assumed to be 0. But as we have already seen, LAD regression
estimates the conditional median regression, so that  can be consistently esti-
mated by the parameter vector that minimizes

(2.45) ) y; - max(0, x/P)!
i=1

which is what Powell suggests. The consistency of this estimator does not require
knowledge of the distribution of the u’s, nor is it assumed that the distribution is
homoskedastic, only that it has median 0.

Although Powell’s estimator is not available in standard software, it can be
calculated from repeated application of median regression following a suggestion
of Buchinsky (1994, p. 412). The first regression is run on all the observations,
and the predicted values x,./B calculated; these are used to discard sample observa-
tions where the predicted values are negative. The median regression is then re-
peated on the truncated sample, the parameter estimates used to recalculate x,./B
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for the whole sample, the negative values discarded, and so on until convergence.
In (occasional) cases where the procedure does not converge, but cycles through
a finite set of parameters, the parameters with the highest value of the criterion
function should be chosen. Standard errors can be taken from the final iteration
though, as before, bootstrapped estimates should be used.

Such a procedure is easily coded in STATA, and was applied to the heteroske-
dastic example given above and shown in Figure 2.4 (see Example 2.1 in the
Code Appendix). To simplify the coding, the procedure was terminated after 10
median regressions, so that to the extent that convergence had not been attained,
the results will be biased against Powell’s estimator. On average, the method does
well, and the mean of the censored LAD estimator over the 100 replications was
0.946. However, there is a price to be paid in variance, and the standard deviation
of 0.305 is three times that of the OLS estimator and more than one and a half
times larger than that of the Tobit. As a result, and although both Tobit and OLS
are inconsistent, in only 55 out of 100 of the replications is the censored LAD
closer to the truth than both oLSs and Tobit. Of course, the bias to variance trade-
off turns in favor of Powell’s estimator as the sample size becomes larger. With
1,000 observations instead of 100, and with the new x values again equally spaced
but 10 times closer, the censored LAD estimator is closer to the truth than either
OLS or Tobit in 96 percent of the cases. Since most household surveys will have
sample sizes at least this large, Powell’s estimator is worth serious consideration.
At the very least, comparing it with the Tobit estimates will provide a useful
guide to failure of homoskedasticity or normality (see Newey 1987 for an exer-
cise of this kind).

Even so, the censored LAD estimator is designed for the censored regression
model, and does not apply to other cases, such as truncation, where the observa-
tions that would have been negative do not appear in the sample instead of being
replaced by zeros, nor to more general models of sample selectivity. In these, the
censoring or truncation of one variable is determined by the behavior of a second
latent variable regression, so that

Yii xi,ﬁ Uy

Yai = Zi’Y Uy

where u, and u, are typically allowed to be correlated, y,, is observed as a
dichotomous variable indicating whether or not y,; is positive, and y,; is observed
as y,; when y, is 1, and is zero otherwise. Equations (2.46) are a generalization
of Tobit, whereby the censoring is controlled by variables that are different from
the variables that control the magnitude of the variable of interest. If the two sets
of u’s are assumed to be jointly normally distributed, (2.46) can be estimated by
maximum likelihood, or by Heckman’s (1976) two-step estimator—the “Heckit”
procedure (see the next section for further discussion). As with Tobit, which is a
special case, these methods do not yield consistent estimates in the presence of
heteroskedasticity or nonnormality, and as with Tobit, the provision of nonpara-
metric estimators is a lively topic of current research in econometrics. I shall
return to these topics in more detail in the next section.

(2.46)
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Radical approaches to censored regressions

Serious attention must also be given to a second, more radical, approach that
questions the usefulness of these models in general. There are conceptual issues
as well as practical ones. In the first place, these models are typically presented as
elaborations of linear regression, in which a standard regression equation is ex-
tended to deal with censoring, truncation, selectivity, or whatever is the issue at
hand. However, in so doing they make a major break from the standard situation
presented in the introduction where the regression function, the expectation of the
dependent variable conditional on the covariates, coincides with the deterministic
part of the regression model. In the Tobit and its generalizations, the regression
functions are no longer simple linear functions of the x’s, but are more complex
expressions that involve the distribution of the u’s. For example, in the censored
regression model (2.41), the regression function is given by

E(yx) = x/B+Eu!x/B+u>0)

%/ + [1-F(-x/B)" [ udFQ)

xp
where F(u) is the CDF of the u’s. Absent knowledge of F, this regression function
does not even identify the p’s—see Powell (1989)—but more fundamentally, we
should ask how it has come about that we have to deal with such an awkward,
difficult, and nonrobust object.

Regressions are routinely assumed to be linear, not because linearity is thought
to be exactly true, but because it is convenient. A linear model is often a sensible
first approximation, and linear regressions are easy to estimate, to replicate, and
to interpret. But once we move into models with censoring or selection, it is much
less convenient to start with linearity, since it buys us no simplification. It is
therefore worth considering alternative possibilities, such as starting by specifying
a suitable functional form for the regression function itself, rather than for the part
of the model that would have been the regression function had we been dealing
with a linear model. Linearity will often not be appropriate for the regression
function, but there are many other possibilities, and as we shall see in the next
chapter, it is often possible to finesse the functional form issue altogether. Such
an approach goes beyond partially nonparametric treatments that allow arbitrary
distributional assumptions for the disturbances while maintaining linearity for the
functional form of the model itself, and recognizes that the functional form is as
much an unknown as is the error distribution. It also explicitly abandons the
attempt to estimate the structure of selectivity or censoring, and focusses on fea-
tures of the data—such as regression functions—that are clearly and uncontrover-
sially observable. There will sometimes be a cost to abandoning the structure, but
there are many policy problems for which the structure is irrelevant, and which
can be addressed through the regression function.

A good example is the effect of a change in tax rates on tax revenue. A gov-
ernment is considering a reduction in the subsidy on wheat (say), and needs to

247)
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know the extent to which demand will be reduced at the higher price. The quan-
tity of interest is the effect of price on average demand. Suppose that we have sur-
vey data on wheat purchases, together with regional or temporal price variation as
well as other relevant explanatory variables. Some households buy positive quan-
tities of wheat, and some buy none, a situation that would seem to call for a Tobit
Estimation of the model yields an estimate of the response of quantity to price for
those who buy wheat. But the policymaker is interested not only in this effect, but
also in the loss of demand from those who previously purchased, but who will
drop out of the market at the higher price. These effects will have to be modeled
separately and added into the calculation. But this is an artificial and unneces-
sarily elaborate approach to the problem. The policy question is about the effect
of price on average demand, averaged over consumers and nonconsumers alike.
But this is exactly what we would estimate if we simply regressed quantity -on
price, with zeros and nonzeros included in the regression. In this case, not only is
the regression function more convenient to deal with from an econometric per-
spective, it is also what we need to know for policy.

2.4 Structure and regression in nonexperimental data

The regression model is the standard workhorse for the analysis of survey data,
and the parameters estimated by regression analysis frequently provide useful
summaries of the data. Even so, they do not always give us what we want. This is
particularly so when the survey data are a poor substitute for unobtainable experi-
mental data. For example, if we want to know the effect of constructing health
clinics, or of expanding schools, or what will happen if a minimum wage or
health coverage is mandated, we should ideally like to conduct an experiment, in
which some randomly chosen group is given the “treatment,” and the results com-
pared with a randomly selected group of controls from whom the treatment is
withheld. The randomization guarantees that there are no differences—observable
or unobservable—between the two groups. In consequence, if there is a signifi-
cant difference in outcomes, it can only be the effect of the treatment. Although
the role of policy experiments has been greatly expanded in recent years (see
Grossman 1994 and Newman, Rawlings, and Gertler 1994), there are many cases
where experiments are difficult or even impossible, sometimes because of the
cost, and sometimes because of the moral and political implications. Instead, we
have to use nonexperimental survey data to look at the differences in behavior
between different people, and to try to relate the degree of exposure to the treat-
ment to variation in the outcomes in which we are interested. Only under ideal
conditions will regression analysis give the right answers. In this section, I ex-
plore the various difficulties; in the next two sections, I look at two of the most
important of the econometric solutions, panel data and the technique of instru-
mental variables.

The starting point for a nonexperimental study is often a regression model, in
which the outcome variable y is related to a set of explanatory variables x. At least
one of the x-variables is the treatment variable, while others are “control” vari-
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ables, included so as to allow for differences in outcomes that are not caused by
the treatment and to allow the treatment effect to be isolated. These variables play
the same role as the control group in an experiment. The error term in the regres-
sion captures omitted controls, as well as measurement error in the outcome y,
and is assumed to satisfy (2.4), that its expectation conditional on the x’s is 0. In
this setup, the expectation of y conditional on x is B’x, and the effects of the
treatment and controls can be recovered by estimating 3. The most common
problem with this procedure is the failure—or at least implausibility—of the
assumption that the conditional mean of the error term is zero. If a relevant vari-
able is omitted, perhaps because it is unobservable or because data are unavail-
able, and if that variable is correlated with any of the included x’s, the error will
not be orthogonal to the x’s, and the conditional expectation of y will not be B'x.
The regression function no longer coincides with the structure that we are trying
to recover, and estimation of the regression function will not yield the parameters
of interest. The failure of the structure and the regression function to coincide
happens for many different reasons, some more obvious than others. In this sec-
tion, I consider a number of cases that are important in the analysis of household
survey data from developing countries.

Simultaneity, feedback, and unobserved heterogenceity

Simultaneity is a classic argument for a correlation between error terms and ex-
planatory variables. If we supplement the regression model (2.3) with another
equation or equations by which some of the explanatory variables are determined
by factors that include y, then the error term in (2.3) will be correlated with one or
more of the x’s and OLS estimates will be biased and inconsistent. The classic
textbook examples of simultaneity, the interdependence of supply or demand and
price, and the feedbacks through national income from expenditures to income,
are usually thought not to be important for microeconomic data, where the pur-
chases of individuals are too small to affect price or to influence their own in-
comes through macroeconomic feedbacks. As we shall see, this is not necessarily
the case, especially when there are local village markets. Other forms of simulta-
neity are also important in micro data, although the underlying causes often have
more to do with omitted or unobservable variables than with feedbacks through
time. Four examples illustrate.

Example 1. Price and quantities in local markets

In the analysis of deinand using microeconomic data, it is usually assumed that
individual purchases are too small to affect price, so that the simultaneity between
price and aggregate demand can be ignored in the analysis of the microeconomic
data. Examples where this is not the case have been provided by Kennan (1989),
and local markets in developing countries provide a related case. Suppose that the
demand function for each individual in each village contains an unobservable
village-level component, and that, because of poor transportation and lack of an
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integrated market, supply and demand are equilibriated at the village level. Al-
though the village-level component in individual demands may contribute little to
the total variance of demand, the other components will cancel out over the vil-
lage as a whole, so that the variation in price across villages is correlated with
village-level taste for the good. Villages that have a relatively high taste for wheat
will tend to have a relatively high price for wheat, and the correlation can be
important even when regressions are run using data from individuals or house-
holds.
To illustrate, write the demand function in the form

(248) yic = aO * Bxic - ch + uic = aO * ﬁxic - ch + ac + eic

where y,. is demand by household i in cluster c, x,, is income or some other indi-
vidual variable, P, is the common village price, and u, is the error term. As in
previous modeling of clusters, I assume that u,, is the sum of a village term ¢
and an idiosyncratic term €, both of which are mean-zero random variables.
Suppose that aggregate supply for the village is z. per household, which comes
from a weather-affected harvest but is unresponsive to price (or to income). Mar-
ket clearing implies that

(249) Zc = j-,(: = a0+Bxc_ch+ac

which determines price in terms of the village taste effect, supply, and average
village income. Because markets have to clear at the village level, the price is
higher in villages with a higher taste for the commodity. In consequence, the price
on the right-hand side of (2.48) is correlated with the o, component of the error
term, and OLS estimates will be inconsistent. The inconsistency arises even if the
village contains many households, each of which has a negligible effect on price.

The bias can be large in this case. To make things simple, assume that p =0,
so that income does not appear in (2.48) nor average income in (2.49). According
to the latter, price in village c is

(2.50) p, = Y (e, + e, -2)

Write 9 for the OLS estimate of y obtained by regressing individual household
demands on the price in the village in which the household lives. Provided that
tastes are uncorrelated with harvests, it is straightforward to show that
2
YO,

(2.51) plimy = ——
O, * 0,

The price response is biased downwards; in addition to the negative effect of
price on demand, there is a positive effect from demand to price that comes from
the effect on both of village-level tastes. The bias will only vanish when the vil-
lage taste effects «_ are absent, and will be large if the variance of tastes is large
relative to the variance of the harvest.
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Example 2. Farm size and farm productivity

Consider a model of the determinants of agricultural productivity, and in particu-
lar the old question of whether larger or smaller farms are more productive; the
observation of an inverse relationship between farm size and productivity goes
back to Chayanov (1925), and has acquired the status of a stylized fact; see Sen
(1962) for India and Berry and Cline (1979) for reviews.

To examine the proposition, we might use survey data to regress output per
hectare on farm size and on other variables not shown, viz.

(2.52) In(Q,/A;) = a+PInA, +u,

where @, is farm output, A, is farm size, and the common finding is that p <0,
so that small farms are “more productive” than large farms. This might be inter-
preted to mean that, compared with hired labor, family labor is of better quality,
more safely entrusted with valuable animals or machinery, and needs less moni-
toring (see Feder 1985; Otsuka, Chuma, and Hayami 1992; and Johnson and
Ruttan 1994), or as an optimal response by small farmers to uncertainty (see
Srinivasan 1972). It has also sometimes been interpreted as a sign of inefficiency,
and of dualistic labor markets, because in the absence of smoothly operating labor
markets farmers may be forced to work too much on their own farms, pushing
their marginal productivity below the market wage (see particularly Sen 1966,
1975). However, if a relationship like (2.52) is estimated on a cross section of
farms, and even if the amount of land is outside the control of the farmer, (2.52)
is likely to suffer from what are effectively simultaneity problems. Such issues
have the distinction of being among the very first topics studied in the early days
of econometrics (see Marschak and Andrews 1944),

Although it may be reasonable to suppose that the farmer treats his farm size
as fixed when deciding what to plant and how hard-to work, this does not mean
that A; is uncorrelated with 4, in (2.52). Farm size may not be controlled by the
farmer, but farms do not get to be the size they are at random. The mechanism
determining farm size will differ from place to place and time to time, but it is
unlikely to be independent of the guality of the land. “Desert” farms that are used
for low-intensity animal grazing are typically larger than “garden” farms, where
the land is rich and output per hectare is high. Such a correlation will be present
whether farms are allocated by the market—Ilow-quality land is cheaper per hect-
are so that it is easier for an owner-occupier to buy a large farm—or by state-
mandated land schemes—each farmer is given a plot large enough to make a
living. In consequence, the right-hand side of (2.52) is at least partly determined
by the left-hand side, and regression estimates of § will be biased downward.

We can also give this simultaneity an omitted variable interpretation where
land quality is the missing variable; if quality could be included in the regression
instead of in the residual, the new residual could more plausibly be treated as
orthogonal to farm size. At the same time, the coefficient p would more nearly
measure the effect of land size, and not as in (2.52) the effect of land size contam-
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inated by the (negative) projection of land quality on farm size. Indeed, when data
are available on land quality—Bhalla and Roy (1988)—or when quality is con-
trolled by Iv methods—Benjamin (1993)—there is little or no evidence of a nega-
tive relationship between farm size and productivity.

The effect of an omitted variable is worth recording explicitly, since the for-
mula is one of the most useful in the econometrician’s toolbox, and is routinely
used to assess results and to calculate the direction of bias caused by the omission.
Suppose that the correct model is

(2.53) Yi = a+Pxiryz

and that we have data on y and x, but not on z. In the current example, y is yield,
and z is land quality. If we run the regression of y on x, the probability limit of the
OLS estimate of P is

. cov(x,
2.54) plimp = p + y SV,

var x

In the example, it might be the case that [} = 0, so that farm size has no effect on
yields conditional on land quality. But y >0, because better land has higher
yields, and the probability limit of § will be negative because farm size and land
quality are negatively correlated.

The land quality problem arises in a similar form if we attempt to use equa-
tions like (2.52) to measure the effects on output of extension services or “mod-
ern” inputs such as chemical fertilizer. Several studies, Bevan, Collier and Gun-
ning (1989) for Kenya and Tanzania, and Deaton and Benjamin (1988) for Céte
d’Ivoire, find that a regression of output on fertilizer input shows extremely high
returns, estimates that, if correct, imply considerable inefficiency and scope for
government intervention.

Deaton and Benjamin use the 1985 Living Standards Survey of Céte d’Ivoire
to estimate the following regression between cocoa output, the structure of the
orchard, and the use of fertilizer and insecticide,

In(Q/LM ) = 5.621 +0.526 (LO /LM ) + 0.054 Insect

(68.5) (4.3) 2.5)
(2.55) +0.158 Fert
2.8)

where Q is kilos of cocoa produced on the farm, LM and LO are the numbers of
hectares of “mature” and “old” trees, respectively, and Insect and Fert are ex-
penditures in thousands of Central African francs per cocoa hectare on insecticide
and fertilizer, respectively. According to (2.55), an additional 1,000 francs spent
on fertilizer will increase the logarithm of output per hectare by 0.158, which at a
sample mean log yield of 5.64 implies an additional 48 kilos of cocoa at 400
francs per kilo, or an additional 19,200 francs. However, only slightly more than
a half of the cocoa stands are fully mature, and the farmers pay the mettayeurs
who harvest the crop between a half and a third of the total. But even after these
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adjustments, the farmer will be left with a return of 5,400 for an outlay of 1,000
francs. Insecticide is estimated to be somewhat less profitable, and the same cal-
culation gives a return of only 1,800 for each 1,000 francs outlay. Yet only 1 in
14 farmers uses fertilizer, and 1 in 5 uses insecticide.

On the surface, these results seem to indicate very large inefficiencies. How-
ever, there are other interpretations. It is likely that highly productive farms are
more likely to adopt fertilizer, particularly if the use of fertilizer is an indicator of
farmer quality and the general willingness to adopt modern methods, high-yield-
ing varieties, and so on. Credit for fertilizer purchases may only be available to
better, or to better-off farmers. Suppose also that some farmers cannot use fertil-
izer because of local climatic or soil conditions or because the type of trees in
their stand, while others have the conditions to make good use of it. When we
compare these different farms, we shall find what we have found, that farmers
that use fertilizer are more productive, but there is no implication that more fertil-
izer should be used. Expenditure on fertilizer in (2.55) may do no more than
indicate that the orchard contains new hybrid varieties of cocoa trees, something
on which the survey did not collect data.

Example 3. The evaluation of projects

Analysis of the effectiveness of government programs and projects has always
been a central topic in development economics. Regression analysis seems like a
helpful tool in this endeavor, because it enables us to link outcomes—incomes,
consumption, employment, health, fertility—to the presence or extent of pro-
grams designed to influence them. The econometric problems of such analyses
are similar to those we encountered when linking farm outputs to farm inputs. In
particular, it is usually impossible to maintain that the explanatory variables—in
this case the programs—are uncorrelated with the regression residuals. Govern-
ment programs are not typically run as experiments, in which some randomly
selected groups are treated and others are left alone.

A regression analysis may show that health outcomes are better in areas where
the government has put clinics, but such an analysis takes no account of the pro-
cess whereby sites are chosen. Clinics may be put where health outcomes were
previously very poor, so that the cross-section regression will tend to underesti-
mate their effects, or they may be allocated to relatively wealthy districts that are
politically powerful, in which case regression analysis will tend to overstate their
true impact. Rosenzweig and Wolpin (1986) found evidence of underestimation
in the Philippines, where the positive effect of clinics on children’s health did not
show up in a cross section of children because clinics were allocated first to the
areas where they were most needed. The clinics were being allocated in a desir-
able way, and that fact caused regression analysis to fail to detect the benefits. In
the next section, I shall follow Rosenzweig and Wolpin and show how panel data
can sometimes be used to circumvent these difficulties. I shall return to the issue
of project evaluation later in this section when I come to discuss selection bias,
and again in Section 2.6 on IV estimation.
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Example 4. Simultaneity and lags: nutrition and productivity

It is important to realize that in cross-section data, simultaneity cannot usually be
avoided by using lags to ensure that the right-hand side variables are prior in time
to the left-hand side variables. If x precedes y, then it is reasonable to suppose that
y cannot affect x directly. However, there is often a third variable that affects y
today as well as x yesterday, and if this variable is omitted from the regression,
today’s y will contain information that is correlated with yesterday’s x. The land
quality issue in the previous example can be thought about this way; although
farm size is determined before the farmer’s input and effort decisions, and before
they and the weather determine farm output, both output and inputs are affected
by land quality, so that there remains a correlation between output and the prede-
termined variables. As a final example, consider one of the more intractable cases
of simultaneity, between nourishment and productivity. If poor people cannot
work because they are malnourished, and they cannot eat because they do not
earn enough, poor people are excluded from the labor market and there is persis-
tent unemployment and destitution. The theory of this interaction was developed
by Mirrlees (1975) and Stiglitz (1976), and it has been argued that such a mecha-
nism helps account for destitution in India (Dasgupta 1993) and for the slow pace
of premodern development in Europe (Fogel 1994).

People who eat better may be more productive, because they have more en-
ergy and work more efficiently, but people who work more efficiently also earn
more, out of which they will spend more on food. Disentangling the effect of
nutrition on wages from the Engel curve for food is difficult, and as emphasized
by Bliss and Stern (1981), it is far from clear that the two effects can ever be -
disentangled. One possibility, given suitable data, is to suppose that productivity
depends on nutrition with a lag—sustained nutrition is needed for work—while
consumption depends on current income. Hence, if y, is the productivity of indi-
vidual ; at time ¢, and ¢, is consumption of calories, we might write

Vi = 0+ Prciy Y 2y, Uy,
Cip = Oy + B yy Y2y, * Uy,

(2.56)

where z, and z, are other variables needed to identify the system. Provided equa-
tion (2.56) is correct and the two error terms are serially independent, both equa-
tions can consistently be estimated by least squares in a cross section with infor-
mation on lagged consumption. However, any form of serial dependence in the
residuals u,, will make OLS estimates of the first equation inconsistent. But there
is a good reason to suppose that these residuals will be serially correlated, since
permanent productivity differences across people that are not attributable to nutri-
tion or the other variables will add a constant “individual” component to the error.
Individuals who are more productive in one period are likely to be more produc-
tive in the next, even when we have controlled for their nutrition and other ob-
servable covariates. More productive individuals will have higher incomes and
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higher levels of nutrition, not only today but also yesterday, so that the lag in the
equation no longer removes the correlation between the error term and the-right-
hand-side variable. In a cross section, predetermined variables can rarely be legit-
imately treated as exogenous.

Measurement error

Measurement error in survey data is a fact of life, and while it is not always pos-
sible to counter its effects, it is always important to realize what those effects are
likely to be, and to beware of inferences that are possibly attributable to, or con-
taminated by, measurement error.

The textbook case is the univariate regression model where both the explana-
tory and dependent variables are subject to mean-zero errors of measurement.
Hence, for the correctly measured variables y and x, we have the linear relation-
ship
(2.57) yi = o+ Px; vy

together with the measurement equations

(2.58) X o=x,+€; V,=y,+€,

where the measurement error is assumed to be orthogonal to the true variables.
Faute de mieux, ¥ is regressed on £, and the OLS parameter estimate of [3 has the
probability limit

: pm
(2.59) plimp = ——— = B,

mxx+cl

where m__ is the variance of the unobservable, correctly measured x, and of is the
variance of the measurement error in x. Equation (2.59) is the “iron law of econo-
metrics,” that the OLS estimate of P is biased towards zero, or “attenuated.” The
degree of attenuation is the ratio of signal to combined signal and noise, A, the
reliability ratio. The presence of measurement error in the dependent variable
does not bias the regression coefficients, because it simply adds to the variance of
the equation as a whole. Of course, this measurement error, like the measurement
error in x, will decrease the precision with which the parameters are estimated.
Attenuation bias is amplified by the addition of correctly measured explana-
tory variables to the bivariate regression (2.57). Suppose we add a vector z to the
right-hand side of (2.57), and assume that z is uncorrelated with the measurement
error in £ and with the original residuals. Then the probability limit of the OLS
estimate of 3, the coefficient of %, is now BA,, where the new reliability ratio
A,is
- Ao - szz

1-R2

(2.60) A, < A

(]
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and szz is the R? from the regression of £ on z. The new explanatory variables z
"soak up" some of the signal from the noisy regressor £, so that the reliability
ratio for P is reduced, and the "iron law" more severely enforced.

More generally, consider a multivariate regression where all regressors may be
noisy and where the measurement error in the independent variables may be cor-
related with the measurement error in the dependent variable. Suppose that the
correctly measured variables satisfy

(2.61) y = XP +u
Then the OLS parameter estimates have probability limits given by
(2.62) plimf = M+Q)'MB+ (M+Q) Yy

where M is the moment matrix of the true x’s, Q is the variance-covariance ma-
trix of the measurement error in the x’s, and vy is the vector of covariances be-
tween the measurement errors in the %’s and the measurement error in §. The
first term in (2.62) is the matrix generalization of the attenuation effect in the
univariate regression—the vector of parameters is subject to a matrix rather than
scalar shrinkage factor—while the second term captures any additional bias from
a correlation between the measurement errors in dependent and independent vari-
ables. The latter effects can be important; for example, if consumption is being
regressed on income, and if there is a common and noisily measured imputation
term in both—home-produced food, or the imputed value of owner-occupied
housing~—then there will be an additional source of bias beyond attenuation ef-
fects. Even in the absence of this second term on the right-hand side of (2.62)
and, in spite of the obvious generalization from scalar to matrix attenuation, the
result does not yield any simple result on the direction of bias in any one coeffi-
cient (unless, of course, €2 is diagonal).

One useful general lesson is to be specific about the structure of measurement
error, and to use a richer and more appropriate specification than the standard one
of mean-zero, independent noise. The analysis is rarely complex, is frequently
worthwhile, and will not always lead to the standard attenuation result. One spe-
cific example is worth a brief discussion. It arises frequently and is simple, but is
nevertheless sometimes misunderstood. Consider the model

(263) yic =a+ Bxic * Yzc * uic

where i is an individual who lives in village c, y,, is an outcome variable, x, and z,
are individual and village-level explanatory variables. In a typical example, y
might be a measure of educational attainment, x a set of family background vari-
ables, and z a measure of educational provision or school quality in the village.
The effect of health provision on health status might be another example. What
often happens in practice is that the z-variables are obtained from administrative,
not survey data, so that we do not have village-level data on z, but only broader
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measures, perhaps at a district or provincial level. These measures are error-rid-
den proxies for the ideal measures, and it might seem that the iron law would
apply. But this is not so.

To see why, write z, for the broad measure—p is for province—so that

(2.64) z,=n, Tz,

cep
where n, is the number of villages in the province. Hence, instead of the
measurement equation (2.58) where the observable is the unobservable plus an
unrelated measurement error, we have

(2.65) 2 =gt

and it is now the observable z_ that is orthogonal to the measurement error. Be-
cause the measurement error in (2.65) is the deviation of the village-level z from
its provincial mean, it is orthogonal to the observed z by construction. As a
result, when we run the regression (2.63) with provincial data replacing village
data, there is no correlation between the explanatory variables and the error term,
and the OLS estimates are unbiased and consistent. Of course, the loss of the
village-level information is not without cost. By (2.65), the averages are less vari-
able than the individuals, so that the precision of the estimates will be reduced.
And we must always be careful in these cases to correct standard errors for group
effects as discussed in Section 2.2 above. But there is no errors-in-variables atten-
uation bias.

In Section 2.6 below, I review how, in favorable circumstances, 1V techniques
can be used to obtain consistent estimates of the parameters even in the presence
of measurement error. Note, however, that if it is possible to obtain estimates of
measurement error variances and covariances, o? in (2.59) or Q and y in (2.62),
then the biases can be corrected and consistent estimates obtained.by substituting
the OLS estimate on the left-hand side of (2.62), replacing Q, Yy, and M on the
right-hand side by their estimates, and solving for . For (2.62), this leads to the
estimator
(2.66) b=XX-nQ)'X5-ny)

where n is the sample size, and the tildes denote variables measured with error.
The estimator (2.66) is consistent if  and y are known or are replaced by consis-
tent estimates. This option will not always be available, but is sometimes possible,
for example, when there are several mismeasured estimates of the same quantity,
and we shall see practical examples in Section 5.3 and 5.4 below.

Selectivity issues

In Chapter 1 and the first sections of this chapter, I discussed the construction of
samples, and the fact that the sample design frequently needs to be taken into
account when estimating characteristics of the underlying population. This is
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particularly important when the selection of the sample is related to the quantity
under study; average travel time in a sample of travelers is likely to be quite
unrepresentative of average travel time among the population as a whole: if wages
influence the decision to work, average wages among workers—which are often
the only wages observed—will be an upward-biased estimator of actual and po-
tential wages. Sample selection also affects behavioral relationships. In one of the
first and most famous examples, Gronau (1973) found that women’s wages were
higher when they had small children, a result whose inherent implausibility
prompted the search for an alternative explanation, and which led to the selection
story. Women with children have higher reservation wages, fewer of them work,
and the wages of those who do are higher. As with the other cases in this section,
the econometric problem is the induced correlation between the error terms and
the regressors. In the Gronau example, the more valuable is a woman’s time at
home, the larger will have to be the unobserved component in her wages in order
to induce her to work, so that among working women, there is a positive correla-
tion between the number of children and the error term in the wage equation.

A useful and quite general model of selectivity is given in Heckman (1990);
according to this there are two different regressions or regimes, and the model
switches between them according to a dichotomous “switch” that is itself ex-
plained. The model is written:

(2.67) Yoi = Xo; Bo+tg ¥y = xy; By +uy
together with the {1,0} variable d; which satisfies
(2.68) d; = 1(z/y +uy;>0)

where the indicator function 1(.) takes the value 1 when the statement it contains
is true, and is zero otherwise. The observed variable y, is determined according to

(2.69) Vi = d;yo; v (1-d)yy;.

The model is sometimes used in almost exactly this form; for example, the two
equations in (2.67) could be wage equations in the formal and informal sectors
respectively, while (2.68) models the decision about which sector to join (see, for
example, van der Gaag, Stelcner and Vijverberg 1989 for a model of this sort
applied to LSMs data from Peru and Céte d’Ivoire). However, it also covers sev-
eral special cases, many of them useful in their own right.

If the right-hand side of the second equation in (2.67) were zero, as it would
be if B, =0 and the variance of u, were zero, we would have the censored regres-
sion model or generalized Tobit. This further specializes to the Tobit model if the
argument of (2.68) and the right-hand side of the first equation coincide, so that
the switching behavior and the size of the response are controlled by the same
factors. However, the generalized Tobit model is also useful; for example, it is
often argued that the factors that determine whether or not people smoke tobacco
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are different from the factors that determine how much smokers smoke. In this
case, (2.69) implies that for those values of y that are positive, the regression
function is

(270) E( )’,-|X,~, Z," y,‘>0) = xi/ﬁ + A'(Zily)

where, since there is only one x and one f3, I have dropped the zero suffix, and
where the last term is defined by

2.71) AMz/Y) = E(ugluy; 2 ~2/y).

(Compare this with the Tobit in (2.47) above.) This version of the model can also
be used to think about the case where the data are truncated, rather than censored
as in the Tobit and generalized Tobit. Censoring refers to the case where obser-
vations that fall outside limits—in this case below zero—are replaced by the limit
points, hence the term “censoring.” With truncation, observations beyond the
limit are discarded and do not appear in our data. Censoring is easier to deal with
because, although we do not observe the underlying latent variable, individual ob-
servations are either censored or not censored, and for both we observe the
covariates x and z, so that it is possible to estimate the switching equation (2.68)
as well as (2.70). With truncation, we know nothing about the truncated observa-
tions, so that we cannot estimate the switching process, and we are restricted to
(2.70). The missing information in the truncated regression makes it difficult to
handle convincingly, and it should be avoided when possible.

A second important special case of the general model is the “treatment” or
“policy evaluation” case. In the standard version, the right-hand sides of the two
switching regressions in (2.67) are taken to be identical apart from their constant
terms, so that (2.69) takes the special form

2.72) y; = a+0d+x/B+u

so that the parameter 0 is the effect on the outcome variable of whether or not the
“treatment” is applied. If this were a controlled and randomized experiment, the
randomization would guarantee that d; would be orthogonal to u,. However,
since u, in (2.68) is correlated with the error terms in the regressions in (2.67),
least squares will not yield consistent estimates of (2.72) because d, is correlated
with u,. This model is the standard one for examining union wage differentials,
for example, but it also applies to many important applications in development
where d; indicates the presence of some policy or project. The siting of health
clinics and schools are the perhaps the most obvious examples. As we have al-
ready seen above, this version of the model can also be thought of in terms of
simultaneity bias.

There are various methods of estimating the general model and its variants.
One possibility is to specify some distribution for the three sets of disturbances in
(2.67) and (2.68), typically joint normality, and then to estimate by maximum
likelihood. Given normality, the y-parameters in (2.68) can be estimated (up to
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scale) by probit, and again given normality, the A-function in (2.71) has a specific
form—the (inverse) Mills’ ratio—and as Heckman (1976) showed in a famous
paper, the results from the probit can be substituted into (2.70) in such a way that
the remaining unknown parameters can be estimated by least squares. Since I
shall refer to this again, it is worth briefly reviewing the mechanics.

When u, and u, are jointly normally distributed, the expectation of each
conditional on the other is linear, so that we can write

(2.73) Uy = 0yp(uy/0,) + g

where ¢, is orthogonal to u,,, ¢, and o, are the two standard deviations, and p is
the correlat1on coefficient. (Note that pc, /o, = o, /02 is the large-sample regres-
sion coefficient of u, on u,, the ratio of the covariance to variance.) Given
(2.73), we can rewrite (2.71) as

/ /
U, zZ, z;vlo
2 |_£>‘_’1] = pco————(P( ’/Y )
G, G G, ®@(z,v/o,)

where @(.) and @(.) are the density and distribution functions of the standard

normal distribution, and where the final formula relies on the special properties of
the normal distribution. The regression function (2.70) can then be written as

/
0(z;v/0,)

- .
O(z;v/0,)

The vector of ratios Y/c, can be estimated by running a probit on the dichotomous
d; from (2.68), the estimates used to compute the inverse Mills’ ratio on the right-
hand side of (2.75), and consistent estimates of 3 and pc,, obtained by OLS regres-
sion.

This "Hecklt" (Heckman’s probit) procedure is widely used in the empirical
development literature, to the extent that it is almost routinely applied as a method
of dealing with selectivity bias. In recent years, however, it has been increasingly
realized that the normality assumptions in these and similar procedures are far
from incidental, and that the results—and even the identification of the models—
may be compromised if we are not prepared to maintain normality. Even when
normality holds, there will be the difficulties with heteroskedasticity that we have
already seen. Recent work has been concerned with the logically prior question as
to whether and under what conditions the parameters of these models are identi-
fied without further parametric distributional assumptions, and with how identi-
fied models can be estimated in a way that is consistent and at least reasonably
efficient under the sort of assumptions that make sense in practice.

The identification of the general model turns out to be a delicate matter, and is
discussed in Chamberlain (1986), Manski (1988), and Heckman (1990). Given
data on which observations are in which regime, the switching equation (2.68) is
identified without further distributional assumptions; at least if we make the (es-
sentially normalizing) assumption that the variance of u, is unity. The identifica-
tion of the other equations requires that there be at least one variable in the

(2.74) MzY) = po, [

(2.75) . = xB+po,
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switching equation that does not appear in the substantive equations, and even
then there can be difficulties; for example, identification requires that the vari-
ables unique to the switching equation be continuous. In many practical applica-
tions, these conditions will not be met, or at best be controversial. In particular, it
is often difficult to exclude any of the selection variables from the substantive
equations. Gronau'’s example, in which children clearly do not belong in the wage
equation, seems to be the exception rather than the rule, and unless it is clear how
the selection mechanism is working, there seems little point in pursuing these
sorts of models, as opposed to a standard investigation of appropriate condition-
ing variables and how they enter the regression function.

The robust estimation of the parameters of selection models is a live research
topic, although the methods are still experimental, and there is far from general
agreement on which are best. In the censoring model (2.70), there exist distribu-
tion-free methods that generalize Heckman’s two stage procedure (see, for ex-
ample, Newey, Powell, and Walker 1990, who make use of the kernel estimation
methods that are discussed in Chapters 3 and 4 below.

One possible move in this direction is to retain a probit—or even linear prob-
ability model, regressing d; on z,—for the first-stage estimation of (2.68), and to
use the estimates to form the index z’y, which is entered in the second-stage reg-
ression (2.70), not through the Mills’ ratio as in (2.75), but in polynomial form,
with the polynomial regarded as an approximation to whatever the true A-function
should be. This is perhaps an unusual mixture of parametric and nonparametric
techniques, but the probit model or linear probability model (if the probabilities
are typically far from either zero or one) are typically acceptable as functional
forms,.and it makes most sense to focus on removing the normality assumptions.

The “policy evaluation” or “treatment” model (2.72) is most obviously estima-
ted using IV techniques as described in Section 2.6 below. Note that the classic
experimental case corresponds to the case where treatment is randomly assigned,
or is randomly assigned to certain groups, so that in either case the u,, in (2.68) is
uncorrelated with the errors in the outcome equations (2.67). In most economic
applications, the “treatment” has at least some element of self-selection, so that d,
in (2.72) will be correlated with the errors, and instrumentation is required. The
obvious instruments are the z-variables, although in practice there will often be
difficulties in finding instruments that can be plausibly excluded from the sub-
stantive equation. Good instruments in this case can sometimes be provided by
“natural experiments,” where some feature of the policy design allows the con-
struction of “treatments” and “controls” that are not self-selected. I shall discuss
these in more detail below.

2.5 Panel data

When our data contain repeated observations on each individual, the resulting
panel data open up a number of possibilities that are not available in the single
cross section. In particular, the opportunity to compare the same individual under
different circumstances permits the possibility of using that individual as his or
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her own control, so that we can come closer to the ideal experimental situation. In
the farm example of the previous section, the quality of the farm—or indeed of
the farmer—can be controlled for, and indeed, the first use of panel data in econo-
metrics was by Mundlak (1961)—see also Hoch (1955)—who estimated farm
production functions controlling for the quality of farm management. Similarly,
we have seen that the use of regression for project evaluation is often invalidated
by the purposeful allocation of projects to regions or villages, so that the explana-
tory variable—the presence or absence of the project—is correlated with unob-
served characteristics of the village. Rosenzweig and Wolpin (1986) and Pitt,
Rosenzweig, and Gibbons (1993) have made good use of panel data to test for
such effects in educational, health, and family planning programs in the Philip-
pines and Indonesia.

Several different kinds of panel data are sometimes available in developing
countries (see also the discussion in Section 1.1 above). A very few surveys—
most notably the ICRISAT survey in India—have followed the same households
over a substantial period of time. In some of the LSMS surveys, households were
visited twice, a year apart, and there are several cases of opportunistic surveys
returning to households for repeat interviews, often with a gap of several years.
Since many important changes take time to occur, and projects and policies take
time to have their effect, the longer gap often produces more useful data. It is also
possible to “create” panel data from cross-sectional data, usually by aggregation.
For example, while it is not usually possible to match individuals from one census
to another, it is frequently possible to match locations, so as to create a panel at
the location level. A good example is Pitt, Rosenzweig, and Gibbons (1993), who
use several different cross-sectional surveys to construct data on facilities for
1980 and 1985 for 3,302 kecamatan (subdistricts) in Indonesia. In Section 2.7
below, I discuss another important example in some detail, the use of repeated but
independent cross sections to construct panel data on birth cohorts of individuals.
For all of these kinds of data, there are opportunities that are not available with a
single cross-sectional survey.

Dealing with heterogeneity: difference- and within-estimation

To see the main advantage of panel data, start from the linear regression model

(2.76) Yie = Bx, + 0, vy, +u,

where the index i runs from 1 to n, the sample size, and ¢ from 1 to 7, where T is
usually small, often just two. The quantity y, is a time (or macro) effect, that ap-
plies to all individuals in the sample at time ¢. The parameter 0, is a fixed effect
for observation i; in the farm size example above it would be unobservable land
quality, in the nutritional wage example, it would be the unobservable personal
productivity characteristic of the individual, and in the project evaluation case, it
would be some unmeasured characteristic of the individual (or of the individual’s
region) that affects program allocation. These fixed effects are designed to cap-
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ture the heterogeneity that causes the inconsistency in the OLS cross-sectional
regression, and are set up in such a way as to allow their control using panel data.
Note that there is nothing to prevent us from thinking of the 0’s as randomly
distributed over the population——so that in this sense the term “fixed effects” is an
unfortunate one—but we are not prepared to assume that they are uncorrelated
with the observed x’s in the regression. Indeed, it is precisely this correlation that
is the source of the difficulty in the farm, project evaluation, and nutrition exam-
ples.

The fact that we have more than one observation on each of the sample points
allows us to remove the 0’s by taking differences, or when there are more than
two observations, by subtracting (or “sweeping out”) the individual means. Sup-
pose that T = 2, so that from (2.76), we can write

@77 Yo Yu = ok )+ Pl -x,) +uy-u,

an equation that can be consistently and efficiently estimated by OLS. When T is
greater than two, use (2.76) to give

2.78) Yoo Fi = (B, - B+ B, ) i,
where the notation ¥, denotes the time mean for individual i. Equation (2.78) can
be estimated as a pooled regression by OLS, although it should be noted (a) that
there are n(7 - 1) independent observations, not n7T. Neither (2.77) nor (2.78)
contains the individual fixed effects 0,, so that these regressions are free of any
correlation between the explanatory variables and the unobserved fixed effects,
and the parameters can be estimated consistently by oLs. Of course, the fixed
effect must indeed be fixed over time—which there is often little reason to sup-
pose—and it must enter the equation additively and linearly. But given these
assumptions, OLS estimation of the suitably transformed regression will yield con-
sistent estimates in the presence of unobserved heterogeneity—or omitted vari-
ables—even when that heterogeneity is correlated with one or more of the in-
cluded right-hand side variables.

In the example from the Philippines studied by Rosenzweig and Wolpin
(1986), there are data on 274 children from 85 households in 20 barrios. The
cross-section regression of child nutritional status (age-standardized height) on
exposure to rural health units and family planning programs gives negative (and
insignificant) coefficients on both. Because the children were observed in two
years, 1975 and 1979, it is also possible to run (2.77), where changes in height are
regressed on changes in exposure, in which regression both coefficients become
positive. Such a result is plausible if the programs were indeed effective, but were
allocated first to those who needed them the most.

The benefit of eliminating unobserved heterogeneity does not come without
cost, and a number of points should be noted. Note first that the regression (2.77)
has exactly half as many observations as the regression (2.76), so that, in order to
remove the inconsistency, precision has been sacrificed. More generally, with T
periods, one is sacrificed to control for the fixed effects, so that the proportional
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loss of efficiency is greatest when there are only two observations. Of course, it
can be argued that there are limited attractions to the precise estimation of some-
thing that we do not wish to know, but a consistent but imprecise estimate can be
further from the truth than an inconsistent estimator. The tradeoff between bias
and efficiency has to be made on a case-by-case basis. We must also beware of
misinterpreting a decrease in efficiency as a change in parameter estimates be-
tween the differenced and undifferenced equations. If the cross-section estimate
shows that P is positive and significant, and if the differenced data yield an esti-
mate that is insignificantly different from both zero and the cross-section esti-
mate, it is not persuasive to claim that the cross-section result is an artifact of not
“treating” the heterogeneity. Second, the differencing will not only sweep out the
fixed effects, it will sweep out all fixed effects, including any regressor that does
not change over the period of observation. In some cases, this removes the attrac-
tion of the procedure, and will limit it in short panels. In the Ivorian cocoa farm-
ing example in the previous section, most of the farmers who used fertilizer re-
ported the same amount in both periods, so that, although the panel data allows us
to control for farm fixed effects, it still does not allow us to estimate how much
additional production comes from the application of additional fertilizer.

Panel data and measurement error

Perhaps the greatest difficulties for difference- and within-estimators occur in the
presence of measurement error. Indeed, when regressors are measured with error,
within- or difference-estimators will no longer be consistent in the presence of un-
observed individual fixed effects, nor need their biases be less than that of the un-
corrected OLS estimator.,

Consider the univariate versions of the regressions (2.76) and (2.77), and com-
pare the probability limits of the OLS estimators in the two cases when, in addition
to the fixed effects, there is white noise measurement error in x. Again, for sim-
plicity, I compare the results from estimation on a single cross section with those
from a two-period panel. The probability limit of the OLS estimator in the cross
section (2.76) is given by
Bmxx + Cro

ot
where c g is the covariance of the fixed effect and the true x, of is the variance of
the measurement error, and I have assumed that the measurement errors and fixed
effects are uncorrelated. The formula (2.79) is a combination of omitted variable
bias, (2.54), and measurement error bias, (2.59). The probability limit of the
difference-estimator in (2.77) is

(2.79) plimf =

Bm,

(2.80) plimp = ;
My *+0p

where m, is the variance of the difference of the true x, and oi is the variance of
the difference of measurement error in x.
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That the estimate in the levels suffers from two biases—attenuation bias and
omitted variable bias—while the difference-estimate suffers from only attenuation
bias is clearly no basis for preferring the latter! The relevant question is not the
number of biases but whether the differencing reduces the variance in the signal
relative to the variance of the noise so that the attenuation bias in the difference-
estimator is more severe than the combined attenuation and omitted variable
biases in the cross-section regression. We have seen one extreme case already;
when the true x does not change between the two periods, the estimator will be
dominated by the measurement error and will,converge to zero. Although the ext-
reme case would often be apparent in advance, there are many cases where the
cross-section variance is much larger than the variance in the changes over time,
especially when the panel observations are not very far apart in time. Although
measurement error may also be serially correlated, with the same individual mis-
reporting in the same way at different times, there will be other cases where errors
are uncorrelated over time, in which case the error difference will have twice the
variance of the errors in levels.

Consider again the two examples of farm productivity and nutritional wages,
where individual fixed effects are arguably important. In the first case, m__ is the
cross-sectional variance of farm size, while m, is the cross-sectional variance of
the change in farm size from one period to another, something that will usually be
small or even zero. In the nutritional wage example, there is probably much great-
er variation in eating habits between people than there is for the same person over
time, so that once again, the potential for measurement error to do harm is much
enhanced. One rather different case is worth recording since it is a rare example
of direct evidence on measurement error. Bound and Krueger (1991) matched
earnings data from the U.S. Current Population Survey with Social Security re-
cords, and were thus able to calculate the measurement error in the former. They
found that measurement error was serially correlated and negatively related to
actual earnings. The reliability ratios—the ratios of signal variance to total vari-
ance—which are also the multipliers of f in (2.79) and (2.80), fall from 0.82 in
levels to 0.65 in differences for men, and from 0.92 to 0.81 for women.

Since measurement error is omnipresent, and because of the relative ineffi-
ciency of difference- and within-estimators, we must be careful never to assume
that the use of panel data will automatically improve our inference, or to treat the
estimate from panel data as a gold standard for judging other estimates. Neverthe-
less, it is clear that there is more information in a panel than in a single cross
section, and that this information can be used to improve inference. Much can be
learned from comparing different estimates. If the difference-estimate has a dif-
ferent sign from the cross-sectional estimate, inspection of (2.79) and (2.80)
shows that the covariance between x and the heterogeneity must be nonzero;
measurement error alone cannot change the signs. When there are several periods
of panel data, the difference-estimator (2.77) and the within-estimator (2.78) are
mathematically distinct, and in the presence of measurement error will have dif-
ferent probability limits. Griliches and Hausman (1986) show how the compari-
son of these two estimators can identify the variance of the measurement error
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when the errors are independent over time—so that consistent estimators can be
constructed using (2.66). When errors are correlated over time—as will be the
case if households persistently make errors in the same direction—information on
measurement error can be obtained by comparing parameters from regressions
computed using alternative differences, one period apart, two periods apart, and
soon.

Lagged dependent variables and exogeneity in panel data

Although it will not be of great concern for this book, I should also note that there
are a number of specific difficulties that arise when panel data are used to esti-
mate regressions containing lagged dependent variables. In ordinary linear regres-
sions, serial correlation in the residuals makes OLS inconsistent in the presence of
a lagged dependent variable. In panel data, the presence of unobserved individual
heterogeneity will have the same effect; if farm output is affected by unobserved
farm quality, so must be last period’s output on the same farm, so that this pe-
riod’s residual will be correlated with the lagged dependent variable. Nor can the
heterogeneity be dealt with by using the standard within- or difference-estimators.
When there is a lagged dependent variable together with unobserved fixed effects,
and we difference, the right-hand side of the equation will have the lagged differ-
ence y, | - y,_;,» and although the fixed effects have been removed by the differ-
encing, there is a differenced error term u, - u,_,, which is correlated with the
lagged difference because u,_, is correlated with y, . Similarly, the within-
estimator is inconsistent because the deviation of lagged y,_, from its mean over
time is correlated, with the deviation of u,, from its mean, not because u, is cor-
related with y,_,, but because the two means are correlated. These inconsistencies
vanish as the number of time periods in the panel increases but, in practice, most
panels are short.

Nor are the problems confined to lagged-dependent variables. Even if all the
right-hand side variables are uncorrelated with the contemporaneous regression
error u,, the deviations from their means can be correlated with the average over
time, u,. For this not to be the case, we require that explanatory variables be
uncorrelated with the errors at all lags and leads, a requirement that is much more
stringent than the usual assumption in time-series work that a variable is predeter-
mined. It is also a requirement that is unlikely to be met in several of the exam-
ples I have been discussing. For example, farm yields may depend on farm size,
on the weather, on farm inputs such as fertilizer and insecticide, and on (unob-
served) quality. The inputs are chosen before the farmer knows output, but a good
output in one year may make the farmer more willing, or more able, to use more
inputs in a subsequent year. In such circumstances, the within-regression will
eliminate the unobservable quality variable, but it will induce a correlation be-
tween inputs and the error term, so that the within-estimator will be inconsistent.

These problems are extremely difficult to deal with in a convincing and robust
way, although there exist a number of techniques (see in particular Nickell 1981;
Chamberlain 1984; Holtz-Eakin, Newey, and Rosen 1988; and particularly the
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series of papers, Arellano and Bond 1991, Arellano and Bover 1993, and Alonso-
Borrego and Arellano 1996). But too much should not be expected from these
methods; attempts to disentangle heterogeneity, on the one hand, and dynamics, on
the other, have a long and difficult history in various branches of statistics and
econometrics.

2.6 Instrumental variables

In all of the cases discussed in Section 2.4, the regression function differs from
the structural model because of correlation between the error terms and the ex-
planatory variables. The reasons differ from case to case, but it is the correlation
that produces the inconsistency in OLS estimation. The technique of 1v is the
standard prescription for correcting such cases, and for recovering the structural
parameters. Provided it is possible to find instrumental variables that are corre-
lated with the explanatory variables but uncorrelated with the error terms, then 1v
regression will yield consistent estimates.

For reference, it is useful to record the formulas. If X is the nxk matrix of
explanatory variables, and if W is an nxk matrix of instruments, then the 1v
estimator of f} is given by

(2.81) By = (WX)'Wh.

Since y = X[} +u and W is orthogonal to u by assumption, (2.81) yields consistent
estimators if the premultiplying matrix WX is of full rank. If there are fewer
instruments than explanatory variables—and some explanatory variables will
often be suitable to serve as their own instruments—the 1V estimate does not exist,
and the model is underidentified. When there are exactly as many instruments as
explanatory variables, the model is said to be exactly identified. In practice, it is
desirable to have more instruments than strictly needed, because the additional in-
struments can be used either to increase precision or to construct tests. In this
overidentified case, suppose that Z is an nxk’ matrix of potential instruments,
with k’>k. Then all the instruments are used in the construction of the set W by
using two-stage least squares, so that at the first stage, each X is regressed on all
the instruments Z, with the predicted values used to construct W. If we define the
“projection” matrix P, = Z(Z'Z)"'Z’, the 1v estimator is written

282) By = (XZ@Z2)'ZX)'X'2(Z'2)'ZYy = (X'P,X)'X'P,y.

Under standard assumptions, (8, is asymptotically normally distributed with
mean [} and a variance-covariance matrix that can be estimated by

(2.83) V = (XP,X)"(X'P,DP,X)(XP,X)™".

The choice of D depends on the treatment of the variance-covariance matrix of
the residuals, and is handled as with OLS, replaced by 27 under homoskedas-
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ticity, or by a diagonal matrix of squared residuals if heteroskedasticity is sus-
pected, or by the appropriate matrix of cluster residuals if the survey is clustered
(see (2.30) above). (Note that the residuals must be calculated as y —XB,V, which
is not the vector of residuals from the second stage of two-stage least squares.
However, this is hardly ever an issue in practice, since econometric packages
make the correction automatically.)

When the model is overidentified, and k’>k, the (partial) validity of the
instruments is usually assessed by computing an overidentification (OID) test
statistic. The simplest—and most intuitive—way to calculate the statistic is to re-
gress the IV residuals y - Xf3,,, on the matrix of instruments Z and to multiply the
resulting (uncentered) R? statistic by the sample size n (see Davidson and Mac-
Kinnon 1993, pp. 232-37). (The uncentered R? is 1 minus the ratio of the sum of
squared residuals to the sum of squared dependent variables.) Under the null
hypothesis that the instruments are valid, this test statistic is distributed as a x?
statistic with k’~k degrees of freedom. This procedure tests whether, contrary to
the hypothesis, the instruments play a direct role in determining y, not just an
indirect role, through predicting the x’s. If the test fails, one or more of the instru-
ments are invalid, and ought to be included in the explanation of y. Put differ-
ently, the OID test tells us whether we would get (significantly) different answers
if we used different instruments or different combinations of instruments in the
regression. This interpretation also clarifies the limitations of the test. It is a test of
overidentification, not of all the instruments. If we have only k instruments and &
regressors, the model is exactly identified, the residuals of the 1v regression are
orthogonal to the instruments by construction, so that the OID test is mechanically
equal to zero, there is only one way of using the instruments, and no alternative
estimates to compare. So the OID test, useful though it is, is only informative
when there are more instruments than strictly necessary.

Although estimation by IV is one of the most useful and most used tools of
modern econometrics, it does not offer a routine solution for the problems diag-
nosed in Section 2.4. Just as it is almost always possible to find reasons—meas-
urement error, omitted heterogeneity, selection, or omitted variables—why the
structural variables are correlated with the error terms, so is it almost always dif-
ficult to find instruments that do not have these problems, while at the same time
being related to the structural variables. It is easy to generate estimates that are
different from the OLS estimates. What is much harder is to make the case that
these estimates are necessarily to be preferred. Credible identification and estima-
tion of structural equations almost always requires real creativity, and creativity
cannot be produced to a formula.

Policy evaluation and natural experiments

One promising approach to the selection of instruments, especially for the treat-
ment model, is to look for “natural experiments,” cases where different sets of
individuals are treated differently in a way that, if not random by design, was
effectively so in practice.
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One of the best, and certainly earliest, examples is Snow’s (1855) analysis of
deaths in the London cholera epidemic of 1853-54, work that is cited by Freed-
man (1991) as a leading example of convincing statistical work in the social
sciences. The following is based on Freedman’s account. Snow’s hypothesis—
which was not widely accepted at the time—was that cholera was waterborne. He
discovered that households were supplied with water by two different water com-
panies, the Lambeth water company, which in 1849 had moved its water intake to
a point in the Thames above the main sewage discharge, and the Southwark and
Vauxhall company, whose intake remained below the discharge. There was no
sharp separation between houses supplied by the two companies, instead “the
mixing of the supply is of the most intimate kind. The pipes of each Company go
down all the streets, and into nearly all the courts and alleys. . . . The experiment,
too, is on the grandest scale. No fewer than three hundred thousand people of
both sexes, of every age and occupation, and of every rank and station, from
gentlefolks down to the very poor, were divided into two groups without their
choice, and in most cases, without their knowledge; one group supplied with
water containing the sewage of London, and amongst it, whatever might have
come from the cholera patients, the other group having water quite free from such
impurity.” Snow collected data on the addresses of cholera victims, and found
that there were 8.5 times as many deaths per thousand among households sup-
plied by the Southwark and Vauxhall company.

Snow’s analysis can be thought of in terms of instrumental variables. Cholera
is not directly caused by the position of a water intake, but by contamination of
drinking water. Had it then been possible to do so, an alternative analysis might
have linked the probability of contracting cholera to a measure of water purity.
But even if such an analysis had shown significant results, it would not have been
very convincing. The people who drank impure water were also more likely to be
poor, and to live in an environment contaminated in many ways, not least by the
“poison miasmas” that were then thought to be the cause of cholera. In terms of
the discussion of Section 2.4, the explanatory variable, water purity, is correlated
with omitted variables or with omitted individual heterogeneity. The identity of
the water supplier is an ideal 1v for this analysis. It is correlated with the explana-
tory variable (water purity) for well-understood reasons, and it is uncorrelated
with other explanatory variables because of the “intimate” mixing of supplies and
the fact that most people did not even know the identity of their supplier.

There are a number of good examples of natural experiments in the economics
literature. Card (1989) shows that the Mariel boatlift, where political events in
Cuba led to the arrival of 125,000 Cubans in Miami between May and September
1980, had little apparent effect on wages in Miami, for either Cubans or non-
Cubans. Card and Krueger (1994) study fast-food outlets on either side of the bor-
der between New Jersey and Pennsylvania around the time of an increase in New
Jersey’s minimum wage, and find that employment rose in New Jersey relative to
Pennsylvania. Another example comes from the studies by Angrist (1990) and
Angrist and Krueger (1994) into earnings differences of American males by vet-
eran status. The “treatment” variable is spending time in the military, and the out-
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come is the effect on wages. The data present somewhat of a puzzle because
veterans of World War II appear to enjoy a substantial wage premium over other
workers, while veterans of the Vietnam War are typically paid less than other
similar workers. The suspicion is that selectivity is important, the argument being
that the majority of those who served in Vietnam had relatively low unobservable
labor market skills, while in World War II, where the majority served, only those
with relatively low skills were excluded from service.

Angrist and Krueger (1994) point out that in the late years of World War II,
the selection mechanism acted in such a way that those born early in the year had
a (very slightly) higher chance of being selected than those born later in the year.
They can then use birth dates as instruments, effectively averaging over all indivi-
duals born in the same quarter, so that to preserve variation in the averages, Ang-
rist and Krueger require a very large sample, in this case 300,000 individuals
from the 1980 census. (Large sample sizes will often be required by “natural ex-
periments” since instruments that are convincingly uncorrelated with the residuals
will often be only weakly correlated with the selection process.) In the IV esti-
mates, the World War II premium is reversed, and earnings are lower for those
cohorts who had a larger fraction of veterans. By contrast, Angrist (1990) finds
that instrumenting earnings equations for Vietnam veterans using the draft lottery
makes little difference to the negative earnings premium experienced by these
workers, so that the two studies together suggest that time spent in the military
lowers earnings compared with the earnings of those who did not serve.

Impressive as these studies are, natural experiments are not always available
when we need them, and some cases yield better instruments than others. Because
“natural” experiments are not genuine, randomized experiments, the fact that the
experiment is effectively (or quasi-) randomized has to be argued on a case-by-
case basis, and the argument is not always as persuasive as in Snow’s case. For
example, government policies only rarely generate convincing experiments (see
Besley and Case 1994). Although two otherwise similar countries (towns, or pro-
vinces) may experience different policies, comparison of outcomes is always be-
deviled by the concern that the differences are not random, but linked to some
characteristic of the country (town or province) that caused the government to
draw the distinction in the first place.

However, it may be possible to follow Angrist and Krueger’s lead in looking,
not at programs themselves, but at the details of their administration. The argu-
ment is that in any program with limited resources or limited reach, where some
units are treated and some not, the administration of the project is likely to lead, at
some level, to choices that are close to random. In the World War II example, it is
not the draft that is random, but the fact that local draft boards had to fill quotas,
and that the bureaucrats who selected draftees did so partially by order of birth. In
other cases, one could imagine people being selected because they are higher in
the alphabet than others, or because an administrator used a list constructed for
other purposes. While the broad design of the program is likely to be politically
and economically motivated, and so cannot be treated as an experiment, natural or
otherwise, the details are handled by bureaucrats who are simply trying to get the
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job done, and who make selections that are effectively random. This is a recipe
for project evaluation that calls for intimate knowledge and examination of detail,
but it is one that has some prospect of yielding convincing results.

One feature of good natural experiments is their simplicity. Snow’s study is a
model in this regard. The argument is straightforward, and is easily explained to
nonstatisticians or noneconometricians, to whom the concept of instrumental vari-
ables could not be readily communicated. Simplicity not only aids communica-
tion, but greatly adds to the persuasiveness of the results and increases the likeli-
hood that the results will affect the policy debate. A case in point is the recent
political firestorm in the United States over Card and Krueger’s (1994) findings
on the minimum wage.

Econometric issues for instrumental variables

IV estimators are invaluable tools for handling nonexperimental data. Even so,
there are a number of difficulties of which it is necessary to be aware. As with
other techniques for controlling for nonexperimental inconsistencies, there is a
cost in terms of precision. The variance-covariance matrix (2.83) exceeds the
corresponding OLS matrix by a positive definite matrix, so that, even when there is
no inconsistency, the v estimators—and all linear combinations of the v esti-
mates—will have larger standard errors than their OLS counterparts. Even when
OLS is inconsistent, there is no guarantee that in individual cases, the IV estimates
will be closer to the truth, and the larger the variance, the less likely it is that they
will be so.

It must also be emphasized that the distributional theory for Iv estimates is
asymptotic, and that asymptotic approximations may be a poor guide to finite
sample performance. Formulas exist for the finite sample distributions of 1v esti-
mators (see, for example, Anderson and Sawa 1979) but these are typically not
sufficiently transparent to provide practical guidance. Nevertheless, a certain
amount is known, and this knowledge provides some warnings for practice.

Finite sample distributions of Iv estimators will typically be more dispersed
with more mass in the tails than either OLS estimators or their own asymptotic
distributions. Indeed, Iv estimates possess moments only up to the degree of over-
identification, so that when there is one instrument for one suspect structural vari-
able, the IV estimate will be so dispersed that its mean does not exist (see David-
son and MacKinnon 1993, 220-4, for further discussion and references). As a
result, there will always be the possibility of obtaining extreme estimates, whose
presence is not taken into account in the calculation of the asymptotic standard
errors. Given sufficient overidentification so that the requisite moments exist—
and note that this rules out some of the most difficult cases—Nagar (1959) and
Buse (1992) show that in finite samples, IV estimates are biased towards the OLS
estimators. This gives support to many students’ intuition when first confronted
with IV estimation, that it is a clever trick designed to reproduce the OLS estimate
as closely as possible while guaranteeing consistency in a (conveniently hypo-
thetical) large sample. In the extreme case, where there are as many instruments
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as observations so that the first stage of two-stage least squares fits the data per-
fectly, the Iv and OLS estimates are identical. More generally, there is a tradeoff
between having too many instruments, overfitting at the first stage, and being
biased towards OLS, or having too few instruments, and risking dispersion and
extreme estimates. Either way, the asymptotic standard errors on which we rou-
tinely rely will not properly indicate the degree of bias or the dispersion.

Nelson and Startz (1990a, 1990b) and Maddala and Jeong (1992) have ana-
lyzed the case of a univariate regression where the options are OLS or IV estima-
tion with a single instrument. Their results show that the central tendency of the
finite-sample distribution of the IV estimator is biased away from the true value
and towards the OLS value. Perhaps most seriously, the asymptotic distribution is
a very poor approximation to the finite-sample distribution when the instrument is
a poor one, in the sense that it is close to orthogonal to the explanatory variable.
Additional evidence of poor performance comes from Bound, Jaeger, and Baker
(1993), who show that the empirical results in Angrist and Krueger (1991), who
used up to 180 instruments with 30,000 observations, can be closely reproduced
with randomly generated instruments. Both sets of results show that poor instru-
ments do not necessarily reveal themselves as large standard errors for the 1v
estimates. Instead it is easy to produce situations in which y is unrelated to x, and
where z is a poor instrument for x, but where the Iv estimate of the regression of y
on x with z as instrument generates a parameter estimate whose “asymptotic ¢-
value” shows an apparently significant effect. As a result, if IV results are to be
credible, it is important to establish first that the instruments do indeed have pre-
dictive power for the contaminated right-hand-side variables. This means display-
ing the first-stage regressions—a practice that is far from routine—or at the least
examining and presenting evidence on the explanatory power of the instruments.
(Note that when calculating two-stage least squares, the exogenous x variables are
also included on the right-hand-side with the instruments, and that it is the predic-
tive power of the latter that must be established, for example, by using an F-test
for those variables rather than the R? for the regression as a whole.)

In recent work, Staiger and Stock (1993) have proposed a new asymptotic
theory for Iv when the instruments are only weakly correlated with the regressors,
and have produced evidence that their asymptotics provides a good approximation
to the finite-sample distribution of IV estimators, even in difficult cases such as
those examined by Nelson and Startz. These results may provide a better basis for
IV inference in future work.

2.7 Using a time series of cross sections

Although long-running panels are rare in both developed and developing count-
ries, independent cross-sectional household surveys are frequently conducted on
a regular basis, sometimes annually, and sometimes less frequently. In Chapter 1,
I have already referred to and illustrated from the Surveys of Personal Income
Distribution in Taiwan (China), which have been running annually since 1976,
and I shall use these data further in this section. Although such surveys select
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different households in each survey, so that there is no possibility of following
individuals over time, it is still possible to follow groups of people from one
survey to another. Obvious examples are the group of the whole population,
where we use the surveys to track aggregate data over time, or regional, sectoral,
or occupational groups, where we might track the differing fortunes over time of
farmers versus government servants, or where we might ask whether poverty is
diminishing more rapidly in one region than in another.

Perhaps somewhat less obvious is the use of survey data to follow cohorts of
individuals over time, where cohorts are defined by date of birth. Provided the
population is not much affected by immigration and emigration, and provided the
cohort is not so old that its members are dying in significant numbers, we can use
successive surveys to follow each cohort over time by looking at the members of
the cohort who are randomly selected into each survey. For example, we can look
at the average consumption of 30-year-olds in the 1976 survey, of 31-year-olds in
the 1977 survey, and so on. These averages, because they relate to the same group
of people, have many of the properties of panel data. Cohorts are frequently inter-
esting in their own right, and questions about the gainers and losers from econo-
mic development are often conveniently addressed by following such groups over
time. Because there are many cohorts alive at one time, cohort data are more
diverse and richer than are aggregate data, but their semiaggregated structure
provides a link between the microeconomic household-level data and the macro-
economic data from national accounts. The most important measures of living
standards, income and consumption, have strong life-cycle age-related compon-
ents, but the profiles themselves will move upward over time with economic
growth as each generation becomes better-off than its predecessors. Tracking
different cohorts through successive surveys allows us to disentangle the gene-
rational from life-cycle components in income and consumption profiles.

Cohort data: an example

The left-hand top panel of Figure 2.5 shows the averages of real earnings for vari-
ous cohorts in Taiwan (China} observed from 1976 through to 1990. The data
were constructed according to the principles outlined above. For example, for the
cohort born in 1941, who were 35 years old in 1976, I used the 1976 survey to
calculate the average earnings of all those aged 35, and the result is plotted as the
first point in the third line from the left in the figure. The average earnings of 36-
year-olds in the 1977 survey is calculated and forms the second point on the same
segment. The rest of the line comes from the other surveys, tracking the cohort
born in 1941 through the 15 surveys until they are last observed at age 49 in
1990. Table 2.2 shows that there were 699 members of the cohort in the 1976
survey, 624 in the 1977 survey, 879 in the 1978 survey (in which the sample size
was increased), and so on until 691 in 1990. The figure illustrates the same pro-
cess for seven cohorts, born in 1951, 1946, and so on backward at five-year inter-
vals until the oldest, which was born in 1921, and the members of which were 69
years old when last seen in 1990. Although it is possible to make graphs for all
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Table 2.2. Number of persons in selected cohorts by survey year, Taiwan
(China), 1976-90

Cohort: age in 1976

Year 25 30 35 40 45 50 55
1976 863 521 699 609 552 461 333
1977 902 604 624 535 585 427 308
1978 1,389 854 879 738 714 629 477
1979 1,351 796 846 708 714 574 462
1980 1,402 834 845 723 746 625 460
1981 1,460 794 807 720 750 624 426
1982 1,461 771 838 695 689 655 496
1983 1,426 737 846 718 702 597 463
1984 1,477 825 820 711 695 541 454
1985 1,396 766 775 651 617 596 442
1986 1,381 725 713 659 664 549 428
1987 1,309 634 775 632 675 513 0
1988 1,275 674 700 617 595 548 0
1989 1,225 672 652 600 609 519 0
1990 1,121 601 691 575 564 508 0

Note: The year is the year of the survey, and the numbers are the numbers of individuals in each cohort
sampled in each survey year. 65 is used as an age cutoff, so the oldest cohort is not observed after 1986.
Source: Author’s calculations from the Surveys of Personal Income Distribution.

birth years, I have shown only every fifth cohort so as to keep the diagram clear.
Note that only members of the same cohort are joined up by connecting lines, and
this construction makes it clear when we are following different groups of people
or jumping from one cohort to another. (See also Figures 6.3 and 6.4 below for
the corresponding graphs for consumption and for a comparison of cross-section-
al and cohort plots.)

The top left-hand panel of the figure shows clear age and cohort effects in
earnings,; it is also possible to detect common macroeconomic patterns for all
cohorts. With a very few exceptions at older ages, the lines for the younger co-
horts are always above the lines for the older cohorts, even when they are ob-
served at the same age. This is because rapid economic growth in Taiwan (China)
is making younger generations better-off, so that, for example, those born in
1951—the youngest, left-most cohort in the figure—have average earnings at age
38 that are approximately twice as much as the earnings at age 38 of the cohort
born 10 years earlier—the third cohort in the figure. There is also a pronounced
life-cycle profile to earnings, and although the age profile is “broken up” by the
cohort effects, it is clear that earnings tend to grow much more rapidly in the
early years of the working life than they do after age 50. As a result, not only are
the younger cohorts of workers in Taiwan (China) better-off than their predeces-
sors, but they have also experienced much more rapid growth in earnings. The
macroeconomic effects in the first panel of Figure 2.5 are perhaps the hardest to
see, but note that each connected line segment corresponds to the same contempo-
raneous span of 15 years in “real” time, 1976-90. Each segment shows the impact
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of the slowdown in Taiwanese economic growth after the 1979 oil shock. Each
cohort has very rapid growth from the second to third year observed, which is
1977-178, somewhat slower growth for the next two years, 1978-80, and then two
years of slow or negative growth after the shock. This decomposition into cohort,
age, and year effects can be formalized in a way that will work even when the
data are not annual and not necessarily evenly spaced, a topic to which I return in
the final subsection below. Before that, however, it is useful to use this example
to highlight the advantages and disadvantages of cohort data more generally.

Cohort data versus panel data

A useful comparison is between the semiaggregated cohort data and genuine
panel data in which individual households are tracked over time. In both cases,
we have a time series of observations on a number of units, with units defined as
either cohorts or individuals. The cohort data cannot tell us anything about dy-
namics within the cohorts; each survey tells us about the distribution of the char-
acteristic in the cohort in each period, but two adjacent surveys tell us nothing
about the joint distribution of the characteristic in the two periods. In the earnings
example, the time series of cross sections can tell us about average earnings for
the cohort over time, and it can tell us about inequality of earnings within the
cohort and how it is changing over time, but it cannot tell us how long individuals
are poor, or whether the people who are rich now were rich or poor at some ear-
lier date. But apart from dynamics, the cohort data can do most of what would be
expected of panel data. In particular, and as we shall see in the next subsection,
the cohort data can be used to control for unobservable fixed effects just as with
panel data, a feature that is often thought to be the main econometric attraction of
the latter.

Cohort data also have a number of advantages over most panels. As we have
seen in Chapter 1, many panels suffer from attrition, especially in the early years,
and so run the risk of becoming increasingly unrepresentative over time. Because
the cohort data are constructed from fresh samples every year, there is no attri-
tion. There will be (related) problems with the cohort data if the sampling design
changes over time, or if the probabilities of selection into the sample depend on
age as, for example, for young men undergoing military training. The way in
which the cohort data are used will often be less susceptible to measurement error
than is the case with panels. The quantity that is being tracked over time is typi-
cally an average (or some other statistic such as the median or other percentile)
and the averaging will nearly always reduce the effects of measurement error and
enhance the signal-to-noise ratio. In this sense, cohort methods can be regarded as
IV methods, where the instruments are grouping variables, whose application
averages away the measurement error. Working with aggregated data at a level
that is intermediate between micro and macro also brings out the relationship
between household behavior and the national aggregates and helps bridge the gap
between them; in Figure 2.5, for example, the behavior of the aggregate economy
is clearly apparent in the averages of the household data.
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It should be emphasized that cohort data can be constructed for any character-
istic of the distribution of interest; we are not confined to means. As we shall see
in Chapter 6, it can be interesting and useful to study how inequality changes
within cohorts over time, and since we have the micro data for each cohort in
each year, it is as straightforward to work with measures of dispersion as it is to
work with measures of central tendency. Medians can be used instead of means—
a technique that is often useful in the presence of outliers—and if the theory sug-
gests working with some transform of the data, the transform can be made prior to
averaging. When working with aggregate data, theoretical considerations often
suggest working with the mean of a logarithm, for example, rather than with the
logarithm of the mean. The former is not available from aggregate data, but can
be routinely computed from the micro data when calculating the semiaggregated
cohort averages.

A final advantage of cohort methods is that they allow the combination of data
from different surveys on different households. The means of cohort consumption
from an expenditure survey can be combined with the means of cohort income
from a labor force survey, and the hybrid data set used to study saving. It is not
necessary that all variables are collected from the same households in one survey.

Against the use of cohort data, it should be noted that there are sometimes
problems with the assumption that the cohort population is constant, an assump-
tion that is needed if the successive surveys are to generate random samples from
the same underlying population. I have already noted potential problems with
military service, migration, aging, and death. But the more serious difficulties
come when we are forced to work, not with individuals, but with households, and
to define cohorts of households by the age of the head. If households once formed
are indissoluble, there would be no difficulty, but divorce and remarriage reorga-
nize households, as does the process whereby older people go to live with their
children, so that previously “old” households become “young” households in sub-
sequent years. It is usually clear when these problems are serious, and they affect
some segments of the population more than others, so that we know which data to
trust and which to suspect.

Panel data from successive cross sections

It is useful to consider briefly the issues that arise when using cohort data as if
they were repeated observations on individual units. I show first how fixed effects
at the individual level carry through to the cohort data, and what steps have to be
taken if they are to be eliminated. Consider the simplest univariate model with
fixed effects, so that at the level of the individual household, we have (2.76) with
a single variable

(2.84) Yy = @+ Px, tp +0, +u,

where the p, are year dummies and 6, is an individual-specific fixed effect. If
there were no fixed effects, it would be possible to average (2.84) over all the
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households in each cohort in each year to give a corresponding equation for the
cohort averages. When there are fixed effects, (2.84) still holds for the cohort
population means, with cohort fixed effects replacing the individual fixed effects.
However, if we average (2.84) over the members of the cohorts who appear in the
survey, and who will be different from year to year, the “fixed effect” will not be
fixed, because it is the average of the fixed effects of different households in each
year. Because of this sampling effect, we cannot remove the cohort fixed effects
by differencing or using within-estimators.

Consider an alternative approach based on the unobservable population means
for each cohort. Start from the cohort version of (2.84), and denote population
means in cohorts by the subscripts ¢, so that, simply changing the subscript i to c,
we have

(2.85) Yo = 0 +Px,+p,+0, +u,

and take first differences—the comparable analysis for the within-estimator is left
as an exercise—to eliminate the fixed effects so that

(2.86) Ay, = Ap,+PAx, +Au,

where the first term is a constant in any given year. This procedure has eliminated
the fixed effects, but we are left with the unobservable changes in the population
cohort means in place of the sample cohort means, which is what we observe. If
we replace Ay and Ax in (2.84) by the observed changes in the sample means,
we generate an error-in-variables problem, and the estimates will be attenuated.

There are at least two ways of dealing with this problem. The first is to note
that, just as the sample was used to provide an estimate of the cohort mean, it can
also be used to provide an estimate of the standard error of the estimate, which in
this context is the variance of the measurement error. For the example (2.86), we
can use overbars to denote sample means and write

Ayct = Ayct + e1(.1 - Elct-l

(2.87) A%, = Ax, +e,,-€,

- where €, , and €, are sampling errors in the cohort means. Because they come
from different surveys with independently selected samples, they are independent
over time, and their variances and covariance, 0}, 0;, and 0,, are calculated in
the usual way, from the variances and covariance in the sample divided by the
cohort size (with correction for cluster effects as necessary.) From (2.87), we see
that the variances and covariances of the sample cohort means are inflated by the
variances and covariances of the sampling errors, but that, if these are subtracted
out, we can obtain consistent estimates of f in (2.86) from—cf. also (2.62) above,

cov(Ax,Ay,) - 0,5, - 0yy,

(2.88) = ~
Va'r(Axcr) - oit - o%r—l

and where, for illustrative purposes, I have assumed that there are only two time
periods ¢ and ¢ - 1. The standard error for (2.88) can be calculated using the boot-
strap or the delta method—discussed in the next section—which can also take
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into account the fact that the variance and covariances of the sampling errors are
estimated (see Deaton 1985, who also discusses the multivariate case, and Fuller
1987, who gives a general treatment for a range of similar models).

Another possible estimation strategy is to use IV, with changes from earlier
years used as instruments. Since the successive samples are independently drawn,
changes in cohort means from #-2 to ¢-1 are measured independently of the
change from ¢ to ¢+ 1. In some cases, the cohort samples may be large enough
and the means precisely enough estimated so that these corrections are small
enough to ignore. In any case, it is a good idea to check the standard errors of the
cohort means, to make sure that regression results are not being dominated by
sampling effects, and if so, to increase the cohort sizes, for example, by working
with five-year age bands instead of single years. In some applications, this might
be desirable on other grounds; in some countries, people do not know their dates
of birth well enough to be able to report age accurately, and reported ages “heap”
at numbers ending in 5 and O.

Decompositions by age, cohort, and year

A number of the quantities most closely associated with welfare, including family
size, earnings, income, and consumption, have distinct and characteristic life-
cycle profiles. Wage rates, earnings, and saving usually have hump-shaped age
profiles, rising to their maximum in the middle years of life, and declining some-
what thereafter. The natural process of bearing and raising children induces a
similar profile in average family size. Moreover, all of these quantities are subject
to secular variation; consumption, earnings, and incomes rise over time with
economic development, and family size decreases as countries pass through the
demographic transition. In consequence, even if the shape of the age profiles re-
mains the same for successive generations, their position will shift from one to the
next. The age profile from a single cross section confounds the age profile with
the generational or cohort effects. For example, a cross-sectional earnings profile
will tend to exaggerate the downturn in earnings at the highest age because, as we
look at older and older individuals, we are not just moving along a given age-
earnings profile, but we are also moving to ever lower lifetime profiles. The co-
hort data described in this section allow us to track the same cohort over several
years and thus to avoid the difficulty; indeed, the Taiwanese earnings example in
Figure 2.5 provides a clear example of the differences between the age profiles of
different cohorts. In many cases, diagrams like Figure 2.5 will tell us all that we
need to know. However, since each cohort is only observed for a limited period of
time, it is useful to have a technique for linking together the age profiles from
different cohorts to generate a single complete life-cycle age profile. This is par-
ticularly true when there is only a limited number of surveys, and the intervals
between them are more than one year. In such cases, diagrams like Figure 2.5 are
harder to draw, and a good deal less informative.

In this subsection, I discuss how the cohort data can be decomposed into age
effects, cohort effects, and year effects, the first to give the typical age profile, the
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second the secular trends that lead to differences in the positions of age profiles
for different cohorts, and the third the aggregate effects that synchronously but
temporarily move all cohorts off their profiles. These decompositions are based
on models and are certainly not free of structural assumptions; they assume away
interaction effects between age, cohort, and years, so that, for example, the shape
of age profiles is unaffected by changes in their position, and the appropriateness
and usefulness of the assumption has to be judged on a case-by-case basis.

To make the analysis concrete, consider the case of the lifetime consumption
profile. If the growth in living standards acts so as to move up the consumption-
age profiles proportionately, it makes sense to work in logarithms, and to write
the logarithm of consumption as

(2.89) Inc, =P+ea, +v, +y, +u,

where the superscripts ¢ and ¢ (as usual) refer to cohort and time (year), and a
refers to age, defined here as the age of cohort ¢ in year ¢. In this particular case,
(2.89) can be given a theoretical interpretation, since according to life-cycle the-
ory under certainty, consumption is the product of lifetime wealth, the cohort
aggregate of which is constant over time, and an age effect, which is determined
by preferences (see Section 6.1 below). In other contexts where there is no such
theory, the decomposition is often a useful descriptive device, as for earnings in
Taiwan (China), where it is hard to look at the top left-hand panel of Figure 2.5
without thinking about an age and cohort decomposition.

In order to implement a model like (2.89), we need to decide how to label
cohorts. A convenient way to do so is to choose ¢ as the age in year t=0. By this,
c is just a number like g and . We can then choose to restrict the age, cohort, and
year effects in (2.89) in various different ways. In particular, we can choose poly-
nomials or dummies. For the year effects, where there is no obvious pattern a
priori, dummy variables would seem to be necessary, but age effects could rea-
sonably be modeled as a cubic, quartic, or quintic polynomial in age, and cohort
effects, which are likely to be trend-like, might even be adequately handled as
linear in ¢. Given the way in which we have defined cohorts, with bigger values
of ¢ corresponding to older cohorts, we would expect ¥, to be declining with c.
When data are plentiful, as in the Taiwanese case, there is no reason not to use
dummy variables for all three sets of effects, and thus to allow the data to choose
any pattern.

Suppose that A is a matrix of age dummies, C a matrix of cohort dummies, and
Y a matrix of year dummies. The cohort data are arranged as cohort-year pairs,
with each “observation” corresponding to a single cohort in a specific year. If
there are m such cohort-year pairs, the three matrices will each have m rows; the
number of columns will be the number of ages (or age groups), the number of
cohorts, and the number of years, respectively. The model (2.89) can then be
written in the form

(2.90) y=pP+Aa+Cy+Yy+u
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where y is the stacked vector of cohort-year observations—each row corresponds
to a single observation on a cohort—on the cohort means of the logarithm of con-
sumption. As usual, we must drop one column from each of the three matrices,
since for the full matrices, the sum of the columns is a column of ones, which is
already included as the constant term.

However, even having dropped these columns, it is still impossible to estimate
(2.90) because there is an additional linear relationship across the three matrices.
The problem lies in the fact that if we know the date, and we know when a cohort
was born, then we can infer the cohort’s age. Indeed, since c is the age of the
cohort in year 0, we have

(291 a,=c+t
which implies that the matrices of dummies satisfy
(2.92) As, = Cs + Ysy

where the s vectors are arithmetic sequences {0,1,2,3, . . ., } of the length given
by the number of columns of the matrix that ~emultiplies them. Equation (2.92)
is a single identity, so that to estimate the model it is necessary to drop one more
column from any one of the three matrices.

The normalization of age, cohort, and year effects has been discussed in dif-
ferent contexts by a number of authors, particularly Hall (1971), who provides an
admirably clear account in the context of embodied and disembodied technical
progress for different vintages of pickup trucks, and by Weiss and Lillard (1978),
who are concerned with age, vintage, and time effects in the earnings of scien-
tists. The treatment here is similar to Hall’s, but is based on that given in Deaton
and Paxson (1994a). Note first that in (2.90), we can replace the parameter vec-
tors «, 'y, and §r by

2.93) a=a+xs, ¥=7-Ks, fy=\y—1<sy

for any scalar constant k, and by (2.92) there will be no change in the predicted
value of y in (2.90). According to (2.93), a time-trend can be added to the age
dummies, and the effects offset by subtracting time-trends from the cohort dum-
mies and the year dummies.

Since these transformations are a little hard to visualize, and a good deal more
complicated than more familiar dummy-variable normalizations, it is worth con-
sidering examples. Suppose first that consumption is constant over cohorts, ages,
and years, so that the curves in Figure 2.5 degenerate to a single straight line with
slope 0. Then we could "decompose” this into a positive age effect, with con-
sumption growing at (say) five percent for each year of age, and offset this by a
negative year effect of five percent a year. According to this, each cohort would
get a five percent age bonus each year, but would lose it to a macroeconomic
effect whereby everyone gets five percent less than in the previous year. If this
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were all, younger cohorts would get less than older cohorts at the same age, be-
cause they come along later in time. To offset this, we need to give each cohort
five percent more than the cohort born the year previously which, since the older
cohorts have higher cohort numbers, means a negative trend in the cohort effects.
More realistically, suppose that when we draw Figure 2.5, we find that the con-
sumption of each cohort is growing at three percent a year, and that each succes-
sive cohort’s profile is three percent higher than that of its predecessor. Everyone
gets three percent more a year as they age, and starting consumption rises by three
percent a year. This situation can be represented (exactly) by age effects that rise
linearly with age added to cohort effects that fall linearly with age by the same
amount each year; note that cohorts are labeled by age at a fixed date, so that
older cohorts (larger ¢) are poorer, not richer. But the same data can be represent-
ed by a time-trend of three percent a year in the age effects, without either cohort
or year effects.

In practice, we choose a normalization that is most suitable for the problem at
hand, attributing time-trends to year effects, or to matching age and cohort ef-
fects. In the example here, where consumption or earnings is the variable to be
decomposed, a simple method of presentation is to attribute growth to age and
cohort effects, and to use the year effects to capture cyclical fluctuations or busi-
ness-cycle effects that average to zero over the long run. A normalization that
accomplishes this makes the year effects orthogonal to a time-trend, so that, using
the same notation as above,

(2.94) s = 0.

The simplest way to estimate (2.90) subject to the normalization (2.94) is to re-
gress y on (a) dummies for each cohort excluding (say) the first, (b) dummies for
each age excluding the first, and (c) a set of T-2 year dummies defined as fol-
lows, from ¢t =3,..,T

(2.95) d’ =d, -[¢t-1)d,-(t-2)d,]

where d, is the usual year dummy, equal to 1 if the year is # and O otherwise. This
procedure enforces the restriction (2.94) as well as the restriction that the year
dummies add to zero. The coefficients of the d,” give the third through final year
coefficients; the first and second can be recovered from the fact that all year ef-
fects add to zero and satisfy (2.94).

This procedure is dangerous when there are few surveys, where it is difficult
to separate trends from transitory shocks. In the extreme case where there are only
two years, the method would attribute any increase in consumption between the
first and second years to an increasing age profile combined with growth from
older to younger cohorts. Only when there are sufficient years for trend and cycle
to be separated can we make the decomposition with any confidence.

The three remaining panels of Figure 2.5 show the decomposition of the earn-
ings averages into age, cohort, and year dummies. The cohort effects in the top
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right-hand panel are declining with age; the earlier you are born, the older you are
in 1976, and age in 1976 is the cohort measure. Although the picture is one that is
close to steady growth from cohort to cohort, there has been a perceptible
acceleration in the rate of growth for the younger cohorts. The bottom left-hand
panel shows the estimated age effects; according to this, wages are a concave
function of age, and although there is little wage increase after age 50, there is no
clear turning down of the profile. Although the top left panel creates an impres-
sion of a hump-shaped age profile of earnings, much of the impression comes
from the cohort effects, not the age effects, and although the oldest cohort shown
has declining wages from ages 58 through 65, other cohorts observed at the same
ages do not display the same pattern. (Note that only every fifth cohort is included
in the top left panel, but all cohorts are included in the regressions, subject only to
age lying being between 25 and 65 inclusive.) The final panel shows the year
effects, which are estimated to be much smaller in magnitude than either the
cohort or age effects; nevertheless they show a distinctive pattern, with the econ-
omy growing much faster than trend at the beginning and end of the period, and
much more slowly in the middle after the 1979 oil shock.

Age and cohort profiles such as those in Figure 2.5 provide the material for
examining the structural consequences of changes in the rates of growth of popu-
lation and real income. For example, if the age profiles of consumption and in-
come are determined by tastes and technology, and are invariant to changes in the
rate of economic growth, we can change the cohort effects holding the age effects
constant and thus derive the effects of growth on aggregates of consumption,
saving, and income. Changes in population growth rates redistribute the popula-
tion over the various ages, so that, once again, we can use the age profiles as the
basis for aggregating over different age distributions of the population. Much pre-
vious work has been forced to rely on single cross sections to estimate age pro-
files, and while this is sometimes the best that can be done, cross-sectional age
profiles confuse the cohort and age effects, and will typically give much less reli-
able estimates than the methods discussed in this section. I return to these tech-
niques in the final chapter when I come to examine household saving behavior.

2.8 Two issues in statistical inference

This final section deals briefly with two topics that will be required at various
points in the rest of the book, but which do not fit easily into the rest of this chap-
ter. The first deals with a situation that often arises in practice, when the parame-
ters of interest are not the parameters that are estimated, but functions of them. I
briefly explain the “delta” method which allows us to transform the variance-
covariance matrix of the estimated parameters into the variance-covariance matrix
of the parameters of interest, so that we can construct hypothesis tests for the
latter. Even when we want to use the bootstrap to generate confidence intervals,
asymptotic approximation to variances are useful starting points that can be im-
proved using the bootstrap (see Section 1.4). The second topic is concerned with
sample size, and its effects on statistical inference. Applied econometricians often



128 THE ANALYSIS OF HOUSEHOLD SURVEYS

express the view that rejecting a hypothesis using 100 observations does not have
the same meaning as rejecting a hypothesis using 10,000 observations, and that
null hypotheses are more often rejected the larger is the sample size. Household
surveys vary in size from a few hundred to tens or even hundreds of thousands of
observations, so that if inference is indeed the hostage of sample size, it is import-
ant to be aware of exactly what is going on, and how to deal with it in practice.

*Parameter transformations: the delta method

Suppose that we have estimates of a parameter vector [3, but that the parameters
of interest are not [3, but some possibly nonlinear transformation &, where

(2.96) o = h(p)

for some known vector of differentiable functions A. In general, this function will
also depend on the data, or on some characteristics of the data such as sample
means. It will also usually be the case that « and § will have different numbers of
elements, k for f and g for o, with g < k. Our estimation method has yielded an
estimate § for B and an associated variance-covariance matrix V;; for which an
estimate is also available. The delta method is a means of transforming Vs into
V,: a good formal account is contained in Fuller (1987, pp. 85-88). Here I con-
fine myself to a simple intuitive outline.

Start by substituting the estimate of [} to obtain the obvious estimate of «,
& = h(B). If we then take a Taylor series approximation of & = k() around the
true value of 3, we have for i =1 ... ¢q,

(2.97) & ~ o +E (ﬁ -B)

or in an obvious matrix notation
(2.98) a-a~HP-P).

The matrix H is the gxk Jacobian matrix of the transformation. If we then post-
multiply (2.98) by its transpose and take expectations, we have

(2.99) V, = HV,H'

In practice (2.99) is evaluated by replacing the three terms on the right-hand side
by their estimates calculated from the estimated parameters. The estimate of the
matrix H can either be programmed directly once the differentiation has been
done analytically, or the computer can be left to do it, either using the analytical
differentiation software that is increasingly incorporated into some econometric
packages, or by numerical differentiation around the estimates of f3.
Variance-covariance matrices from the delta method are often employed to
calculate Wald test statistics for hypotheses that place nonlinear restrictions on the
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parameters. The procedure follows immediately from the analysis above by writ-
ing the null hypothesis in the form:

(2.100) Hyoa = h(P)=0
for which we can compute the Wald statistic
(2.101) w=a'v'a.

Under the null hypothesis, W is asymptotically distributed as x? with g degrees of
freedom. For this to work, the matrix V, has to be nonsingular, for which a
necessary condition is that g be no larger than k; clearly we must not try to test the
same restriction more than once.

As usual, some warnings are in order. These results are valid only as large-
sample approximations, and may be seriously misleading in finite samples. For
example, the ratio of two normally distributed variables has a Cauchy distribution
which does not possess any moments, yet the delta method will routinely provide
a “variance” for this case. In the context of the Wald tests of nonlinear restric-
tions, there are typically many different ways of writing the restrictions, and un-
less the sample size is large and the hypothesis correct, these will all lead to dif-
ferent values of the Wald test (see Gregory and Veall 1985 and Davidson and
MacKinnon 1993, pp. 463-71, for further discussion).

Sample size and hypothesis tests

Consider the frequently encountered situation where we wish to test a simple null
hypothesis against a compound alternative, that § =, for some known f;
against the alternative  # 3. A typical method for conducting such a test would
be to calculate some statistic from the data and to see how far it is from the value
that it would assume under the null, with the size of the discrepancy acting as
evidence against the null hypothesis. Most obviously, we might estimate { itself
without imposing the restriction, and compare its value with 3. Likelihood-ratio
tests—or other measures based on fit~—compare how well the model fits the data
at unrestricted and restricted estimates of . Score—or Lagrange multiplier—tests
calculate the derivative of the criterion function at f, on the grounds that non-
zero values indicate that there are better-fitting alternatives nearby, so casting
doubt on the null. All of these supply a measure of the failure of the null, and our
acceptance and rejection of the hypothesis can be based on how big is the mea-
sure.

The real differences between different methods of hypothesis testing come,
not in the selection of the measure, but in the setting of a critical value, above
which we reject the hypothesis on the grounds that there is too much evidence
against it, and below which we accept it, on the grounds that the evidence is not
strong enough to reject. Classical statistical procedures—which dominate econo-
metric practice—set the critical value in such a way that the probability of reject-
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ing the null when it is correct, the probability of Type I error, or the size of the
test, is fixed at some preassigned level, for example, five or one percent. In the
ideal situation, it is possible under the null hypothesis to derive the sampling
distribution of the quantity that is being used as evidence against the null, so that
critical values can be calculated that will lead to exactly five (one) percent of
rejections when the null is true. Even when this cannot be done, the asymptotic
distribution of the test statistic can usually be derived, and if this is used to select
critical values, the null will be rejected five percent of the time when the sample
size is sufficiently large. These procedures take no explicit account of the power
of the test, the probability that the null hypothesis will be rejected when it is false,
or its complement, the Type II error, the probability of not rejecting the null when
it is false. Indeed, it is hard to see how these errors can be controlled because the
power depends on the unknown true values of the parameter, and tests will typi-
cally be more powerful the further is the truth from the null.

That classical procedures can generate uncomfortable results as the sample
size increases is something that is often expressed informally by practitioners, and
the phenomenon has been given an excellent treatment by Leamer (1978, pp.
100~ 120), and it is on his discussion that the following is based.

The effect most noted by empirical researchers is that the null hypothesis
seems to be more frequently rejected in large samples than in small. Since it is
hard to believe that the truth depends on the sample size, something else must be
going on. If the critical values are exact, and if the null hypothesis is exactly true,
then by construction the null hypothesis will be rejected the same fraction of
times in all sample sizes; there is nothing wrong with the logic of the classical
tests. But consider what happens when the null is not exactly true, or alterna-
tively, that what we mean when we say that the null is true is that the parameters
are “close” to the null, “close” referring to some economic or substantive mean-
ing that is not formally incorporated into the statistical procedure. As the sample
size increases, and provided we are using a consistent estimation procedure, our
estimates will be closer and closer to the truth, and less dispersed around it, so
that discrepancies that were undetectable with small sample sizes will lead to
rejections in large samples. Larger sample sizes are like greater resolving power
on a telescope; features that are not visible from a distance become more and
more sharply delineated as the magnification is turned up.

Over-rejection in large samples can also be thought about in terms of Type I
and Type II errors. When we hold Type I error fixed and increase the sample size,
all the benefits of increased precision are implicitly devoted to the reduction of
Type II error. If there are equal probabilities of rejecting the null when it is true
and not rejecting it when it is false at a sample size of 100, say, then at 10,000, we
will have essentially no chance of accepting it when it is false, even though we
are still rejecting it five percent of the time when it is true. For economists, who
are used to making tradeoffs and allocating resources efficiently, this is a very
strange thing to do. As Leamer points out, the standard defense of the fixed size
for classical tests is to protect the null, controlling the probability of rejecting it
when it is true. But such a defense is clearly inconsistent with a procedure that
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devotes none of the benefit of increased sample size to lowering the probability
that it will be so rejected.

Repairing these difficulties requires that the critical values of test statistics be
raised with the sample size, so that the benefits of increased precision are more
equally allocated between reduction in Type I and Type II errors. That said, it is a
good deal more difficult to decide exactly how to do so, and to derive the rule
from basic principles. Since classical procedures cannot provide such a basis,
Bayesian alternatives are the obvious place to look. Bayesian hypothesis testing is
based on the comparison of posterior probabilities, and so does not suffer from
the fundamental asymmetry between null and alternative that is the source of the
difficulty in classical tests. Nevertheless, there are difficulties with the Bayesian
methods too, perhaps most seriously the fact that the ratio of posterior probabili-
ties of two hypotheses is affected by their prior probabilities, no matter what the
sample size. Nevertheless, the Bayesian approach has produced a number of pro-
cedures that seem attractive in practice, several of which are reviewed by Leamer.

It is beyond the scope of this section to discuss the Bayesian testing proce-
dures in any detail. However, one of Leamer’s suggestions, independently pro-
posed by Schwarz (1978) in a slightly different form, and whose derivation is also
insightfully discussed by Chow (1983, pp. 300-2), is to adjust the critical values
for F and x? tests. Instead of using the standard tabulated values, the null is re-
jected when the calculated F-value exceeds the logarithm of the sample size, Inn,
or when a x? statistic for g restrictions exceeds glnn. To illustrate, when the
sample size is 100, the null hypothesis would be rejected only if calculated F-
statistics are larger than 4.6, a value that would be doubled to 9.2 when working
with sample sizes of 10,000.

In my own work, some of which is discussed in the subsequent chapters of this
book, I have often found these Leamer-Schwarz critical values to be useful. This
is especially true in those cases where the theory applies most closely, when we
are trying to choose between a restricted and unrestricted model, and when we
have no particular predisposition either way except perhaps simplicity, and we
want to know whether it is safe to work with the simpler restricted model. If the
Leamer- Schwarz criterion is too large, experience suggests that such simplifica-
tions are indeed dangerous, something that is not true for classical tests, where
large-sample rejections can often be ignored with impunity.

2.9 Guide to further reading

The aim of this chapter has been to extract from the recent theoretical and applied
econometric literature material that is useful for the analysis of household-level
data. The source of the material was referenced as it was introduced, and in most
cases, there is little to consult apart from these original papers. I have assumed
that the reader has a good working knowledge of econometrics at the level of an
advanced undergraduate, masters’, or first-year graduate course in econometrics
covering material such as that presented in Pindyck and Rubinfeld (1991). At the
same level, the text by Johnston and DiNardo (1996) is also an excellent starting
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point and, on many topics, adopts an approach that is sympathetic to that taken
here. A more advanced text that covers a good deal of the modern theoretical
material is Davidson and MacKinnon (1993), but like other texts it is not written
from an applied perspective. Cramer (1969), although now dated, is one of the
few genuine applied econometrics texts, and contains a great deal that is still
worth reading, much of it concerned with the analysis of survey data. Some of the
material on clustering is discussed in Chapter 2 of Skinner, Holt, and Smith
(1989). Groves (1989, ch. 6) contains an excellent discussion of weighting in the
context of modeling versus description. The STATA manuals, Stata Corporation
(1993), are in many cases well ahead of the textbooks, and provide brief discus-
sions and references on each of the topics with which they deal.



3 Welfare, poverty,
and distribution

One of the main reasons for collecting survey data on household consumption and
income is to provide information on living standards, on their evolution over time,
and on their distribution over households. Living standards of the poorest parts of
the population are of particular concern, and survey data provide the principal
means for estimating the extent and severity of poverty. Consumption data on
specific commodities tell us who consumes how much of what, and can be used to
examine the distributional consequences of price changes, whether induced by
deliberate policy decisions or as a result of weather, world prices, or other exoge-
nous forces. In this chapter, I provide a brief overview of the theory and practice
of welfare measurement, including summary measures of living standards, of
poverty, and of inequality, with illustrations from the Living Standards Surveys of
Cote d’Ivoire from 1985 through 1988 and of South Africa in 1993. I also discuss
the use of survey data to examine the welfare effects of pricing and of transfer
policies using as examples pricing policy for rice in Thailand and pensions in
South Africa.

The use of survey data to investigate living standards is often straightforward,
requiring little statistical technique beyond the calculation of measures of central
tendency and dispersion. Although there are deep and still-controversial concep-
tual issues in deciding how to measure welfare, poverty, and inequality, the mea-
surement itself is direct in that there is no need to estimate behavioral responses
nor to construct the econometric models required to do so. Instead, the focus is on
the data themselves, and on the best way to present reliable and robust measures
of welfare. Graphical techniques are particularly useful and can be used to describe
the whole distribution of living standards, rather than focussing on a few summary
statistics. For example, the Lorenz curve is a standard tool for charting inequality,
and in recent work, good use has been made of the cumulative distribution func-
tion to explore the robustness of poverty measures. For other questions it is useful
to be able to display (univariate and bivariate) density functions, for example when
looking at two measures of living standards such as expenditures and nutritional
status, or when investigating the incidence of price changes in relation to the
distribution of real incomes. While cross-tabulations and histograms are the tradi-
tional tools for charting densities, it is often more informative to calculate nonpara-
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metric estimates of densities using one of the smoothing methods that have re-
cently been developed in the statistical literature. One of the purposes of this
chapter is to explain these methods in simple terms, and to illustrate their use-
fulness for the measurement of welfare and the evaluation of policy.

The chapter consists of three sections. Section 3.1 is concerned with welfare
measurement, and Section 3.3 with the distributional effects of price changes and
cash transfers. Each section begins with a brief theoretical overview and continues
with empirical examples. The techniques of nonparametric density estimation are
introduced in the context of living standards in Section 3.2 and are used exten-
sively in Section 3.3 This last section shows how regression functions—condi-
tional expectations—can often provide direct answers to questions about distribu-
tional effects of policy changes, and I discuss the use of nonparametric regression
as a simple tool for calculating and presenting these regression functions.

3.1 Living standards, inequality, and poverty

Perhaps the most straightforward way to think about measuring living standards
and their distribution is a purely statistical one, with the mean, median, or mode
representing the central tendency and various measures of dispersion—such as the
variance or interquartile range—used to measure inequality. However, greater
conceptual clarity comes from a more theoretical approach, and specifically from
the use of social welfare functions as pioneered by Atkinson (1970). This is the
approach that I follow here, beginning with social welfare functions, and then
using them to interpret measures of inequality and poverty.

Social welfare

Suppose that we have decided on a suitable measure of living standards, denoted
by x; this is typically a measure of per capita household real income or consump-
tion, but there are other possibilities, and the choices are discussed below. We de-
note the value of social welfare by W and write it as a nondecreasing function of
all the x’s in the population, so that

(3.1 W= V(x, x5 . . .,xy)

where N is the population size. Although our data often come at the level of the
household, it is hard to give meaning to household or family welfare without start-
ing from the welfare of its members. In consequence, the x’s in (3.1) should be
thought of as relating to individuals, and N to the number of persons in the popula-
tion. The issue of how to move from household data to individual welfare is an
important and difficult one, and I shall return to it.

It is important not to misinterpret a social welfare function in this context. In
particular, it should definitely not be thought of as the objective function of a
government or policymaking agency. There are few if any countries for which the
maximization of (3.1) subject to constraints would provide an adequate description
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of the political economy of decisionmaking. Instead, (3.1) should be seen as a
statistical “aggregator” that turns a distribution into a single number that provides
an overall judgment on that distribution and that forces us to think coherently
about welfare and its distribution. Whatever our view of the policymaking process,
it is always useful to think about policy in terms of its effects on efficiency and on
equity, and (3.1) should be thought of as a tool for organizing our thoughts in a
coherent way.

What is the nature of the function V, and how is it related to the usual concepts?
When V is increasing in each of its arguments, social welfare is greater whenever
any one individual is better-off and no one is worse-off, so that Pareto improve-
ments are always improvements in social welfare. For judging the effects of any
policy, we shall almost always want this Pareto condition to be satisfied. However,
as we shall see, it is often useful to think about poverty measurement in terms of
social welfare, and this typically requires a social welfare function that is unre-
sponsive to increases in welfare among the nonpoor. This case can be accommo-
dated by weakening the Pareto condition to the requirement that V be nondecreas-
ing in each of its arguments.

Social welfare functions are nearly always assumed to have a symmetry or
anonymity property, whereby social welfare depends only on the list of welfare
levels in society, and not on who has which welfare level. This makes sense only
if the welfare levels are appropriately defined. Mon -y income does not translate
into the same level of living at different price levels, and a large household can
hardly be as well-off as a smaller one unless it has more money to spend. I shall
return to this issue below, when I discuss the definition of x, and in Chapter 4,
when I discuss the effects of household composition on welfare.

Finally, and perhaps most importantly, social welfare functions are usually
assumed to prefer more equal distributions to less equal ones. If we believe that
inequality is undesirable, or equivalently that a gift to an individual should in-
crease social welfare in (3.1) by more when the recipient is poorer, then for any
given total of x—and ignoring any constraints on feasible allocations—social
welfare will be maximized when all x’s are equal. (Note that policies that seek to
promote equality will often have incentive effects, so that a preference for equality
is not the same as a claim that equality is desirable once the practical constraints
are taken into account.) Equity preference will be guaranteed if the function V has
the same properties as a standard utility function, with diminishing marginal utility
to each x, or more formally, when it is quasi-concave, so that when we draw social
indifference curves over the different x’s, they are convex to the origin. Quasi-
concavity of V means that if x! and x2 are two lists of x's, with one element for
each person, and if V(x!) = V(x?) so that the two allocations are equally socially
valuable, then any weighted average, A x! + (1-A)x?2 for A between 0 and 1, will
have as high or higher social welfare. A weighted average of any two equally good
allocations is at least as good as either. In particular, quasi-concavity implies that
social welfare will be increased by any transfer of x from a richer to a poorer
person, provided only that the transfer is not sufficiently large to reverse their
relative positions. This is the “principle of transfers,” originally proposed by Dal-
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ton (1920). It should be noted that the principle of transfers does not require quasi-
concavity, but a weaker condition called “s-concavity” (see Atkinson 1992 for a
survey and more detailed discussion).

Inequality and social welfare

For the purposes of passing from social welfare to measures of inequality, it is
convenient that social welfare be measured in the same units as individual welfare,
so that proportional changes in all x’s have the same proportional effect on the
aggregate. This will happen if the function V is homogeneous of degree one, or has
been transformed by a monotone increasing transform to make it so. Provided the
transform has been made, we can rewrite (3.1) as

X Xy
(3.2) W = HV('—, .. ,_")
M M

where p is the mean of the x’s. Equation (3.2) gives a separation between the mean
value of x and its distribution, and will allow us to decompose changes in social
welfare into changes in the mean and changes in a suitably defined measure of
inequality. Finally, we choose units so that V(1,1,...,1) =1, so that when there
is perfect equality, and everyone has the mean level of welfare, social welfare is
also equal to that value.

Since social welfare is equal to u when the distribution of x's is perfectly equal,
then, by the principle of transfers, social welfare for any unequal allocation cannot
be greater than the mean of the distribution p. Hence we can write (3.2) as

(3.3) W=nu(l-I)

where [ is defined by the comparison of (3.2) and (3.3), and represents the cost of
inequality, or the amount by which social welfare falls short of the maximum that
would be attained under perfect equality. / is a measure of inequality, taking the
value zero when the x’s are equally distributed, and increasing with disequalizing
transfers. Since the inequality measure is a scaled version of the function V with a
sign change, it satisfies the principle of transfers in reverse, so that any change in
distribution that involves a transfer from rich to poor will decrease / as defined by
(3.2) and (3.3).

Figure 3.1 illustrates social welfare and inequality measures for the case of a
two-person economy. The axes show the amount of x for each of the two consum-
ers, and the point § marks the actual allocation or status quo. Since the social
welfare function is symmetric, the point S’, which is the reflection of S in the 45-
degree line, must lie on the same social welfare contour, which is shown as the line
SBS'. Allocations along the straight line SCS’ (which will not generally be
feasible) correspond to the same total x, and those between S and S’ have higher
values of social welfare. The point B is the point on the 45-degree line that has the
same social welfare as does S; although there is less x per capita at B than at S, the
equality of distribution makes up for the loss in total. The amount of x at B is
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Figure 3.1. Measuring inequality from social welfare

Y

denoted x ¢, and is referred to by Atkinson as “equally distributed equivalent x.”
Equality is measured by the ratio OB/OC, or by x ¢/, a quantity that will be unity
if everyone has the same, or if the social welfare contours are straight lines perpen-
dicular to the 45-degree line. This is the case where “a dollar is a dollar” whoever
receives it so that there is no perceived inequality. Atkinson’s measure of inequal-
ity, defined by (3.3), is shown in the diagram as the ratio BC/OC.

One of the advantages of the social welfare approach to inequality measure-
ment, as embodied in (3.3), is that it precludes us from making the error of inter-
preting measures of inequality by themselves as measures of welfare. It will some-
times be the case that inequality will increase at the same time that social welfare
is increasing. For example, if everyone gets better-off, but the rich get more than
the poor, inequality will rise, but there has been a Pareto improvement, and most
observers would see the new situation as an improvement on the original one.
When inequality is seen as a component of social welfare, together with mean
levels of living, we also defuse those critics who point out that a focus on inequal-
ity misdirects attention away from the living standards of the poorest (see in
particular Streeten et al 1981). Atkinson’s formulation is entirely consistent with
an approach that pays attention only to the needs of the poor or of the poorest
groups, provided of course that we measure welfare through (3.3), and not through
(negative) I alone. Just to reinforce the point, we might define a “basic-needs”
social welfare function to be the average consumption of the poorest five percent
of society, u” say. This measure can be rewritten as u (1 - 7), where I is the
inequality measure 1 -p P/u.
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Measures of inequality

Given this basic framework, we can generate measures of inequality by specifying
a social welfare function and solving for the inequality measure, or we can start
from a standard statistical measure of inequality, and enquire into its consistency
with the principle of transfers and with a social welfare function. The first ap-
proach is exemplified by Atkinson’s own inequality measure. This starts from the
additive social welfare function

l—e

IN
(3.4a) W=—=%L , €#1
Nil-
N
(3.4b) an———Elnx €=1
Nll

The parameter € >0 controls the degree of “inequality aversion” or the degree to
which social welfare trades off mean living standards on the one hand for equality
of the distribution on the other. In Figure 3.1, social welfare indifference curves
are flatter when € is small, so that, for the same initial distribution S, the point B
moves closer to the origin as € increases.

Atkinson’s social welfare function, which will also prove useful in the tax
reform analysis of Chapter 5, has the property that the ratio of marginal social
utilities of two individuals is given by the reciprocal of the ratio of their x’s raised
to the power of €: Wl

(3.5) = (x;/x)%

oW/ox;

Hence, if € is zero so that there is no aversmn to inequality, marginal utility is the
same for everyone, and social welfare is simply p, the mean of the x’s. If € is 2, for
example, and i is twice as well-off as j, then the marginal social utility of addi-
tional x to i is one-fourth the marginal social utility of additional x to j. As € tends
to infinity, the marginal social utility of the poorest dominates over all other mar-
ginal utilities, and policy is concerned only with the poorest. When social welfare
is the welfare of the poorest, which is what (3.4) becomes as € tends to infinity,
social preferences are sometimes said to be maximin (the object of policy is to
maximize the minimum level of welfare) or Rawlsian, after Rawls (1972). Think-
ing about relative marginal utilities according to (3.5) is sometimes a convenient
way of operationalizing the extent to which one would want poor people to be
favored by policies or projects.

The inequality measure associated with (3.4) are, when € # 1,

LN 1/(1-€)
(3.6a) I= 1—(—E(x,./p)"‘)
N iz

and, when € = 1, the multiplicative form

N
(3.6b) 1=1-]] G/w™.
i=1
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These expressions are obtained by raising social welfare to the power of 1/(1 -¢€),
which makes the function homogeneous of the first degree, and then following
through the procedures of the previous subsection. In line with the interpretation
of € as an aversion or perception parameter, there is no (perceived) inequality
when € is zero, no matter what the distribution of the x’s. Conversely, if € >0 and
one person has all but a small amount ¢, say, with o spread equally over the oth-
ers, then [ tends to one as the number of people becomes large. Values of € above
0 but below 2 appear to be useful, although in applications, it is often wise to look
at results for a range of different values.

We may also choose to start from the standard measures of inequality. Provided
these satisfy the principle of transfers, they will be consistent with Atkinson’s
approach, and will each have an associated social welfare function that can be
recovered by applying (3.3). Some statistical measures of inequality do not satisfy
the principle of transfers. The interquartile ratio—the 75th percentile less the 25th
percentile divided by the median—is one such. Transferring x from a richer to a
poorer person in the same quartile group will have no effect on inequality, and a
transfer from someone at the bottom quartile to someone poorer will lower the
bottom quartile and so will actually increase inequality. Less obviously, it is also
possible to construct cases where a transfer from a better-off to a poorer person
will increase the variance of logarithms. However, this can only happen when both
people are far above the mean—which may not be relevant in some applications—
and the other conveniences of the log variance may render it a competitive in-
equality measure in spite of this deficiency.

Other standard measures that do satisfy the principle of transfers are the Gini
coefficient, the coefficient of variation, and Theil’s “entropy” measure of inequal-
ity. The Gini coefficient if often defined from the Lorenz curve (see below), but
can also be defined directly. One definition is the ratio to the mean of half the
average over all pairs of the absolute deviations between people; there are
N(N-1)/2 distinct pairs in all, so that the Gini is

=———3¥¥lyx -x;l.
(3.79) Y pN(N ey
Note that when everyone has the same, 1, the Gini coefficient is zero, while if one
person has Ny, and everyone else zero, there are N -1 distinct nonzero absolute
differences, each of which is Ny, so that the Gini is 1. The double sum in (3.7a)
can be expensive to calculate if N is large, and an equivalent but computationally
more convenient form is

N+1 2 N
3.7b = - Yo.x
(3.70) Y= N NWN-Dp i Pi%i

where p; is the rank of individual i in the x-distribution, counting from the top so
that the richest has rank 1. Using (3.7b), the Gini can straightforwardly and rapidly
be calculated from microeconomic data after sorting the observations. I shall give
examples below, together with discussion of how to incorporate sample weights,
and how to calculate the individual-level Gini from household-level data.
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Not surprisingly in view of (3.7b), the social welfare function associated with
the Gini coefficient is one in which the x's are weighted by the ranks of each
individual in the distribution, with the weights larger for the poor. Since the Gini
lies between zero and one, the value of social welfare in an economy with mean p
and Gini coefficient y is p (1 -y), a measure advocated by Sen (1976a) who used
it to rank of Indian states. The same measure has been generalized by Graaff
(1977) to p(1 -v)°, for o between 1 and 0; Graaff suggests that equity and effi-
ciency are separate components of welfare, and that by varying o we can give
different weights to each (see also Atkinson 1992 for examples).

The coefficient of variation is the standard deviation divided by the mean,
while Theil’s entropy measure is given by

N
(3.8) -1 Eﬁln(ﬁ).
Niap \p
I, lies between 0, when all x’s are identical, and InN, when one person has every-
thing. This and other measures are discussed at much greater length in a number
of texts, for example, Cowell (1995) or Kakwani (1980).

The choice between the various inequality measures is sometimes made on
grounds of practical convenience, and sometimes on grounds of theoretical prefer-
ence. On the former, it is frequently useful to be able to decompose inequality into
“between” and “within” components, for example, between and within regions,
sectors, or occupational groups. Variances can be so decomposed, as can Theil’s
entropy measure, while the Gini coefficient is not decomposable, or at least not
without hard-to-interpret residual terms (see, for example, Pyatt 1976). It is also
sometimes necessary to compute inequality measures for magnitudes—such as in-
comes or wealth—that can be negative, which is possible with the Gini or the coef-
ficient of variation, but not with the Theil measure, the variance of logarithms, or
the Atkinson measure. Further theoretical refinements can also be used to narrow
down the choice. For example, we might require that inequality be more sensitive
to differences between the poor than among the rich (see Cowell 1995), or that
inequality aversion be stronger the further we are away from an equal allocation
(see Blackorby and Donaldson 1978). All of these restrictions have appeal, but
none has acquired the universal assent that is accorded to the principle of transfers.

Poverty and social welfare

In developing countries, attention is often focussed less on social welfare and in-
equality than on poverty. Indeed, poverty is frequently seen as the defining charac-
teristic of underdevelopment, and its elimination as the main purpose of economic
development. In such a context, it is natural for welfare economics to have a
poverty focus. Even so, and although the poverty measurement literature has de-
veloped in a somewhat different direction, the social welfare function approach of
this section is quite general, and as we have already seen, can readily accommo-
date a preference and measurement structure that is focusses attention exclusively
towards the poor.



WELFARE, POVERTY, AND DISTRIBUTION 4]

The social welfare function (3.1) transforms the distribution of x’s into a single
number that can be interpreted as a summary welfare measure that takes into ac-
count both the mean of the distribution and its dispersion. However, we are free to
choose a function that gives little or no weight to the welfare of people who are
well-off, so that social welfare becomes a measure of the welfare of the poor, in
other words, a (negative) measure of poverty. In this sense, poverty measures are
special cases of social welfare measures. However, in practical work, they serve
rather different purposes. Poverty measures are designed to count the poor and to
diagnose the extent and distribution of poverty, while social welfare functions are
guides to policy. Just as the measurement of social welfare can be a inadequate
guide to poverty, so are poverty measures likely to be an inadequate guide to
policy.

As far as measurement is concerned, what separates the social welfare from the
poverty literatures is that, in the latter, there is a poverty line, below which people
are defined as poor, and above which they are not poor. In the language of social
welfare, this effectively assigns zero social welfare to marginal benefits that accrue
to the nonpoor, whereas the inequality literature, while typically assigning greater
weight to benefits that reach lower in the distribution, rarely goes as far as assign-
ing zero weight to the nonpoor. While the simplicity of a poverty line concept has
much to recommend it, and is perhaps necessary to focus attention on poverty, it
is a crude device. Many writers have expressed grave doubts about the idea that
there is some discontinuity in the distribution of welfare, with poverty on one side
and lack of it on the other, and certainly there is no empirical indicator—income,
consumption, calories, or the consumption of individual commodities—where
there is any perceptible break in the distribution or in behavior that would provide
an empirical basis for the construction of a poverty line.

Even when there exists an acceptable, readily comprehensible, and uncontro-
versial line, so that we know what we mean when we say that o percent of the
population is poor, we should never minimize this measure as an object of policy.
The poverty count is an obviously useful statistic, it is widely understood, and it is
hard to imagine discussions of poverty without it. However, there are policies that
reduce the number of people in poverty, but which just as clearly decrease social
welfare, such as taxes on very poor people that are used to lift the just-poor out of
poverty. Similarly, a Pareto-improving project is surely socially desirable even
when it fails to reduce poverty, and it makes no sense to ignore policies that would
improve the lot of those who are poor by many definitions, but whose incomes
place them just above some arbitrary poverty line.

The construction of poverty lines

Without an empirical basis such as a discontinuity in some measure, the construc-
tion of poverty lines always involves arbitrariness. In developed countries where
most people do not consider themselves to be poor, a poverty line must be below
the median, but different people will have different views about exactly how much
money is needed to keep them out of poverty. Almost any figure that is reasonably
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central within the distribution of these views will make an acceptable poverty line.
The official poverty line in the United States evolved from work in the early 1960s
by Orshansky (1963, 1965) who took the cost of the U.S. Department of Agricul-
ture’s “low-cost food plan” and multiplied it by three, which was the reciprocal of
the average food share in the Agriculture Department’s 1955 household survey of
food consumption.

While such a procedure might seem to be empirically well-grounded—and the
perception that it is so has been important in the wide and continuing acceptance
of the line—it is arbitrary to a considerable extent. The food plan itself was only
one of several that were adapted by nutritional “experts” from the food consump-
tion patterns of those in the lowest third of the income range in the 1955 survey,
while the factor of three was based on food shares at the mean, not at the median,
or at the 40th or the 25th percentile, for all of which a case could be mounted. In
fact, Orshansky’s line of a little over $3,000 for a nonfarm family of four was
adopted, not because of its scientific foundations, but because her procedure
yielded an answer that was acceptably close to another arbitrary figure that was
already in informal use within the federal government (see Fisher 1992 for more
on the history and development of the U.S. poverty line).

In India, poverty lines and poverty counts have an even more venerable history
stretching back to 1938 and the National Planning Committee of the Indian
National Congress. The more recent history is detailed in Government of India
(1993), from which the following account is drawn. In 1962, “a Working Group
of eminent economists and social thinkers” recommended that people be counted
as poor if they lived in a household whose per capita monthly expenditure was less
than 20 rupees at 196061 prices in rural areas, or 25 rupees in urban areas. These
“bare minimum” amounts excluded expenditure on health and education, both of
which were “expected to be provided by the State according to the Constitution
and in the light of its other commitments.” The precise economic and statistical
basis for these calculations is not known, although the cost of obtaining minimally
adequate nutrition was clearly taken into account, and the difference between
urban and rural lines made an allowance for higher prices in the former.

Dandekar and Rath (1971a, 1971b) refined these poverty lines using a method
that is still in widespread use. They started from an explicit calorie norm, 2,250
calories per person per day in both urban and rural areas. Using detailed food data
from the National Sample Surveys (NsS), they calculated calorie consumption per
capita as a function of total household expenditure per capita—the calorie Engel
curve—and found that the norms were reached on average at 14.20 rupees per
capita per month in rural areas, and 22.60 rupees per capita in urban areas, again
at 196061 prices. These estimates were further refined by a “Task Force” of the
Planning Commission in 1979, who revised the calorie norms to 2,400 in rural
areas, and 2,100 in urban areas; the difference comes from the lower rates of
physical activity in urban areas. The 28th round (1973-74) of the NSS was then
used to estimate regression functions of calories on expenditure, and to convert
these numbers to 49.09 rupees (rural) and 56.64 rupees (urban) at 1973-74 prices.
These lines—updated for all-India price inflation—have been the basis for Indian
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poverty counts since 1979, although the “Expert Group” that reported in 1993 has
recommended that allowance be made for interstate variation in price levels.

In poor countries such as India, where food makes up a large share of the bud-
get, and where the concern with poverty is closely associated with concerns about
undernutrition, it makes more sense to use food and nutritional requirements to
derive poverty lines than it does in the United States The “low-cost food plan” in
the United States can be replaced by something closer to the minimum adequate
diet for the country and type of occupation, and because food is closer to three-
quarters than a third of the budget, the “multiplier” needed to allow for nonfood
consumption is smaller, less important, and so inherently less controversial.

Even so, the calorie-based procedure of setting a poverty line is subject to a
number of serious difficulties. First, the minimum adequate calorie levels are
themselves subject to uncertainty and controversy, and some would argue that
resolving the arbitrariness about the poverty line with a calorie requirement simply
replaces one arbitrary decision with another. Second, the concept of a behavioral
Engel curve does not sit well with the notion that there is a subsistence level of
calories. Suppose, for example, that a household is poor in that its expected calorie
intake conditional on its income is inadequate, but has more than enough to buy
the subsistence number of calories if it spent more of its budget on food. It seems
that the subsistence number of calories is not really “required” in any absolute
sense, or at least that the household is prepared to make tradeoffs between food
and other goods, tradeoffs that are not taken into account in setting the line. Third,
it is always dangerous to measure welfare using only a part of consumption, even
when the part of consumption is as important as is food. When food is relatively
cheap, people will consume more—even if only marginally so—and poverty lines
will be higher where the relative price of food is higher, even though consumers
may be compensated by lower prices elsewhere in the budget.

Bidani and Ravallion (1994) have examined this phenomenon in Indonesia.
They show that higher food prices in the cities, together with the lower caloric re-
quirements of more sedentary urban jobs, imply that the urban calorie Engel curve
is lower than the rural calorie Engel curve. At the same level of PCE, urban con-
sumers consume less calories than do rural consumers. In consequence, a common
nutritional standard requires a higher level of PCE in the cities. In the Indonesian
case, this results in a poverty line so much higher in urban than rural areas that
there appears to be more poverty in the former, even though real incomes and real
levels of consumption are much higher in the cities.

Once poverty lines are established they often remain fixed in real terms. In the
United States, the current poverty line is simply Orshansky’s 1961 poverty line
updated for increases in the cost of living. In India, as detailed above, there have
been revisions to methodology, but the lines have changed very little in real terms,
and a number of studies, such as Bardhan (1973) and Ahluwalia (1978, 1985),
have used poverty lines close to those proposed by Dandekar and Rath in 1971.
This constancy reflects a view of poverty as an absolute; poverty is defined by the
ability to purchase a given bundle of goods so that the poverty line should remain
fixed in real terms. However, not everyone accepts this position, and it can be ar-
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gued that poverty lines should move with the general standard of living, although
perhaps not at the same rate. Some would argue that poverty is a purely relative
phenomenon, defined by current social customs, and that the poor are simply those
in the bottom percentiles of the distribution of welfare.

An intermediate view comes from Sen’s (1985, 1992) view of welfare in terms
of the capability to function in society. If economic growth means that food is sold
with an increased amount of packaging and service built in, if city center stores
relocate to suburban areas that cannot be reached on foot, and if urban growth
increases the cost and time to travel to work, then a fixed absolute poverty line
makes no sense. There is also some relevant empirical evidence that comes from
asking people whether they are poor and what the poverty line ought to be (see
Mangahas 1979, 1982, 1985, who makes good use of such surveys to assess
poverty in the Philippines). In the United States, Gallup polls have regularly asked
respondents how much money they would need “to get along,” and more occasion-
ally what they think would be an adequate poverty line. In the 1960s, the mean
responses about the latter were close to the official (Orshansky) line, but have
since increased in real terms, although not always as fast as has average real dis-

‘posable income (see Rainwater 1974 and Vaughan 1992). Ravallion (1993) has
also examined the cross-country relationship between real gross domestic product
(GDP) and poverty lines, and found that the elasticity is close to unity. While many
people—including this author—are uncomfortable with an entirely relative con-
cept of poverty, it is surely right that there should be some movement of the line
in response to changes in mean levels of living. v

The conceptual and practical difficulties over the choice of a poverty line mean
that all measures of poverty should be treated with skepticism. For policy evalu-
ation, the social welfare function is all that is required to measure welfare, includ-
ing an appropriate treatment of poverty. While it is possible—and in my view
desirable—to give greater weight to the needs of the poorest, I see few advantages
in trying to set a sharp line, below which people count and above which they do
not. Poverty lines and poverty counts make good headlines, and are an inevitable
part of the policy debate, but they should not be used in policy evaluation. Perhaps
the best poverty line is an infinite one; everyone is poor, but some a good deal
more so than others, and the poorer they are the greater weight they should get in
measuring welfare and in policy evaluation.

The concept of a poverty line is deeply embedded in the poverty literature, and
measures of poverty are typically based on it. Even so, a good deal of the recent
literature on poverty has followed Atkinson (1987) in recognizing that the poverty
line is unlikely to be very precisely measured, and trying to explore situations in
which poverty measures are robust to this uncertainty. I shall return to this ap-
proach below once I have introduced some of the standard measures.

Measures of poverty

There are a number of good reviews of alternative poverty measures and their
properties, see in particular Foster (1984) and Ravallion (1993), so that I can
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confine myself here to a brief discussion of the most important measures. The
obvious starting point—and the measure most often quoted—is the headcount
ratio, defined as the fraction of the population below the poverty line. If the line
is denoted by z, and the welfare measure is x, then the headcount ratio is

1 N
3.9) Py = 5 Zlt<2)

where 1(.) is an indicator function that is 1 if its argument is true and O otherwise.
The sum of the indicators on the right-hand side of (3.9) is the number of people
in poverty, so that P, is simply the fraction of people in poverty.

It is worth noting that with a change of sign, (3.9) could conceivably be re-
garded as a social welfare function. It is the average value of a rather strange valu-
ation function in which x counts as ~1 when it is below the poverty line z, and as
0 when it is above z. This function is illustrated as the heavy line labeled P, in
Figure 3.2; it is nondecreasing in x, so it has some of the characteristics of a utility
function, but its discontinuity at the poverty line means that it is not concave. It is
this lack of concavity that violates the principle of transfers, and makes it possible
to increase social welfare by taking money from the very poor to lift some better-
off poor out of poverty.

Even if the poverty line were correctly set, and even if it were acceptable to
view poverty as a discrete state, the headcount ratio would be at best a limited
measure of poverty. In particular, it takes no account of the degree of poverty, and
would, for example, be unaffected by a policy that made the poor even poorer. The

Figure 3.2. Alternative poverty measures and social welfare

Contribution to social
welfure z x

ooy
Lo

Individual
welfare

Qv
\\

<o




146 THE ANALYSIS OF HOUSEHOLD SURVEYS

headcount ratio gives the same measure of poverty whether all the poor are just
below a generous poverty line, or whether they are just above an ungenerous level
of subsistence. One way of doing better is to use the poverty gap measure

1 ¥ X,

3.10$) P, = —E(l——-’) I(x;<2).
i=1 z

According to (3.10), the contribution of individual i to aggregate poverty is larger
the poorer is i. P can also be interpreted as a per capita measure of the total short-
fall of individual welfare levels below the poverty line; it is the sum of all the
shortfalls divided by the population and expressed as a ratio of the poverty line
itself. Hence if, for example, P, were 0.25, the total amount that the poor are
below the poverty line is equal to the population multiplied by a quarter of the
poverty line.

It is tempting to think of P (or at least P,z) as a measure of the per capita
“cost” of eliminating poverty, but this is far from being so except in the impracti-
cal case where lump-sum taxes and subsidies are possible. Even when tax and
subsidy administration is efficient and is not corrupt, redistributive taxes have
incentive effects that may render the elimination of poverty neither possible nor
desirable given the actual range of feasible policies. This is clearly the case in an
economy where everyone is poor, but applies much more widely. Once again, the
appropriate way to think about tax systems for poverty alleviation is to go back to
the social welfare function (3.1), to make sure that it incorporates the appropriate
degree of weighting towards the poor, and to apply the general theory of tax
design (see Newbery and Stern 1987 for a general discussion of such problems in
the contexts of developing countries, and Chapter 5 below for some of the empi-
rical issues).

The poverty gap measure (3.10) has a number of advantages over the head-
count ratio (3.9). In particular, the summand is now a continuous function of x, so
that there is no longer a discontinuity in the contribution of an individual to the
poverty measure as that individual’s x passes through the poverty line. When x is
just below z, the contribution to poverty is very small, it is zero when x equals z,
and remains at zero above z. Furthermore the function (1 -x/z) 1(x<z) is convex
in x—although not strictly so—so that the principle of transfers holds—at least in
a weak form. As a result, the social welfare interpretation of the poverty gap mea-
sure also makes more sense than that of the headcount ratio. The behavior of each
individual’s contribution to -P, is illustrated in Figure 3.2 by the piecewise linear
function rising from -1 to 0, a value which it retains above z. This function is
increasing in x, and is (just) concave, so that while social welfare is not altered by
transfers among the poor or among the nonpoor, it is no longer possible to increase
social welfare by acting as an anti-Robin Hood, taking resources from the poor to
give to the rich,

The poverty gap measure will be increased by transfers from poor to nonpoor,
or from poor to less poor who thereby become nonpoor. But transfers among the
poor have no effect on the measure of poverty, and on this account we may wish
to consider other poverty measures. Sen’s (1976b) measure of poverty remedies
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the defect by incorporating the inequality among the poor. The definition is

(3.11) P = Po(l —(1—7")—“;)

where p” is the mean of x among the poor, and y? is the Gini coefficient of in-
equality among the poor, calculated by treating the poor as the whole population.
Note that when there is no inequality among the poor, P reduces to the poverty
gap measure P,. Conversely, when all but one of the poor has nothing, P;=P,
and the Sen measure coincides with the headcount ratio. More generally, the Sen
measure is the average of the headcount and poverty gap measures weighted by the
Gini coefficient of the poor,

(3.12) Pg = Pyy? + P (1-47).

Because Sen’s measure depends on the Gini coefficient, it shares two of its in-
conveniences. First, the Gini—and thus the Sen index—is not differentiable. Al-
though there is no economic reason to require differentiability, the inability to dif-
ferentiate is sometimes a nuisance. More seriously, Sen’s measure cannot be used
to decompose poverty into contributions from different subgroups, something that
is often informative when monitoring changes in poverty. If the aggregate poverty
measure can be written as a weighted average of the poverty measures for the rural
and urban sectors, or for households by age, or by occupation of the head, then
changes over time can be similarly decomposed thus helping to identify groups
that are particularly at risk, as well as sometimes pointing to the underlying mecha-
nisms. While decomposability is hardly as fundamental a property as (say) the
principle of transfers, it is extremely useful.

Our final poverty measure, or set of measures, comes from Foster, Greer, and
Thorbecke (1984). Their measures are direct generalizations of the poverty gap
(3.10) and are written, for some positive parameter o,

N
(3.13) P, = N E(1-x,/2)*1(x;52)

i=1
so that P and P, are special cases corresponding to values for & of 0 and 1, res-
pectively. The larger the value of ¢, the more does the measure penalize the pov-
erty gaps. Most frequently used is & =2, which yields a poverty measure like the
Sen index that is sensitive to distribution among the poor. The decomposability
property of (3.13) follows immediately from its additive structure. In particular, if
sectors are denoted by s, and there are S of them, we can write .

(3.14) P, ‘): ¥ (1-x,/*1(x;s2) = X(n,/N)P,

s=1 jes
where #n_ is the number of people in sector s and P, is the Foster, Greer, and
Thorbecke index for poverty within the sector. Using (3 14), changes in aggregate
poverty can be assigned to changes in sectoral poverty measures or to changes in
the proportion of people in each sector.
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Figure 3.2 shows how P, measures up as a social welfare function. The third
line, shown as dots and dashes, is the contribution of individual welfare to social
welfare defined as -P, in the case where o is greater than unity; as with P,, this
line continues along the x-axis to the right of z. Because the function is strictly
concave below z, it is sensitive to the degree of inequality among the poor. It is
also continuously differentiable, even at the poverty line, so that the implicit
marginal social utility declines continuously from its maximum among the poorest
to zero at and above the poverty line.

The choice of the individual welfare measure

Apart from a brief reference in the context of choosing a poverty line, I have so far
avoided discussion of exactly how welfare is to be measured, and what practical
concept should replace the x’s in the various poverty and inequality formulas.
Ideally, we should like a survey based measure that approaches as closely as pos-
sible the individual welfare measures of economic theory. Particularly useful here
is the concept of money metric utility—see Deaton and Muellbauer (1980a, ch. 7)
for an overview—whereby the indifference curves of individual preference order-
ings are labeled by the amount of money needed to reach them at some fixed set
of prices. In order to avoid the specification of a parametric utility function, money
metric utility can be approximated by real income or real expenditure, the two
leading candidates for practical welfare measures. However, there are other possi-
bilities, indicators of nutritional status being perhaps the most important, and even
if we settle on income or expenditures, there are many other guestions that have to
be settled before going on to compute the measures. In this subsection, I discuss a
few of the most important: the choice between consumption and income or other
concepts, the choice between individual and household measures, the choice of
time period, as well as some data issues, particularly the effects of measurement
error and reporting periods.

In the context of measuring welfare in developing countries, there is a very
strong case in favor of using measures based on consumption not income. The
standard argument—that by the permanent income hypothesis, consumption is a
better measure of lifetime welfare than is current income—is much weaker than
arguments based on practicality and data. It is unwise to condition a welfare mea-
sure on the validity of a hypothesis whose empirical support is at best mixed. In
particular and as we shall see in Chapter 6, there is very little evidence from devel-
oping countries—or anywhere else—that lifetime consumption profiles are de-
tached from lifetime income profiles as is required if consumption is to be superior
to income as an indicator of lifetime welfare. Of course, there is no doubt that
households smooth their consumption over shorter periods, certainly days, months,
and seasons, and to some extent over runs of years. Income, especially agricultural
income, can be extremely variable, and a farmer’s income in any month is a poor
indicator of living standards in that month. A better case can be made for annual
income, but if farmers can even partially smooth out good years and bad, con-
sumption will be the better measure.
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At the practical level, and as discussed in Section 1.2, the difficulties of
measuring income are much more severe than those of measuring consumption,
especially for rural households whose income comes largely from self-employ-
ment in agriculture. Given also that annual income is required for a satisfactory
estimate of living standards, an income-based measure requires multiple visits or
the use of recall data, whereas a consumption measure can rely on consumption
over the previous few weeks. Note that these arguments are likely reversed if we
were dealing with, for example, the United States, where individual consumption
surveys are much less developed than income surveys, where a much smaller
fraction of the population is self-employed, where seasonality is much less of an
issue, and where it is both feasible and economical to obtain accurate estimates of
income for most people.

The conversion of nominal measures of consumption to real measures requires
a price index. In most cases, there will exist an adequate consumer price index or
cost-of-living estimate that can be used to compare data collected in different time
periods. In countries with rapid inflation, this may even have to be done within
each survey year, since different households are interviewed at different times.
What is often more difficult is the comparison of living costs across regions at a
given time, for example, when we are trying to compare living standards or pov-
erty rates across different regions. In some surveys—but not typically in the Living
Standards Surveys—households are asked to report both quantities and expendi-
tures on a range of goods, particularly foods, and these data can be used to calcu-
late unit values. Although unit values are not the same as prices—an issue that will
be discussed in some detail in Chapter 5—accurate price indexes for each region
can nevertheless be obtained from the unit values by averaging within regions and
calculating a Laspeyres index for each, that is by pricing out a fixed bundle of
goods at the average unit values for each region. The Living Standards Surveys
have usually collected price data, not from households, but from observations on
prices in markets used by the households in the survey, and these data can also be
used to construct regional price indexes.

Although consumption and income are the standard measures of economic wel-
fare, we will often want to supplement them with other measures of well-being,
such as nutritional and health status, life expectancy, and education. While it is
possible to consider methods for combining these indicators into a single measure,
there is no adequate theory underlying such an aggregate so that weighting
schemes are inevitably arbitrary, and it is more informative—as well as honest—to
keep the different indicators separate. This is not to downplay the importance of
these other indicators, nor to deny that public goods such as hospitals and schools
contribute an important part of individual welfare. However, it is important not to
confuse the components of economic welfare with their aggregate. We have al-
ready seen how the definition of a poverty line in terms of calories can give mis-
leading results when relative prices differ. The same argument applies to attempts
to shortcut welfare measurement using indicators such as housing, or the owner-
ship of durable goods. Immigrants to big cities often live in very poor-quality
housing in order to have access to employment. In such cases, their poor housing
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reflects the high price of housing in urban areas, but may tell us little about their
living standards.

Because surveys collect data at the level of the household, and not the indivi-
dual, poverty and welfare measures must be based on consumption and income
totals for the household, not for the individual. Although some surveys collect data
on individual earnings, and even on individual income from assets, there is typi-
cally a component of household income—a large component in the case of family
farms—that is not readily attributable to individual household members. For con-
sumption, the position is even worse. Data on purchases are inevitably purchases
for the household as a whole, and although some items—such as food—are con-
ceptually assignable to particular individuals, the cost of observing who eats what
is too large for all but specialist nutritional surveys. Even then there are questions
about contamination of behavior by the presence of the enumerator during food
preparation and family meals. There are also public goods in most households—
goods and services the consumption of which by one member of the household
does not exclude consumption by others. The consumption of these goods cannot
be assigned to specific individuals.

As aresult, we can either treat households as the units whose welfare is being
measured, or we can use some rule to divide household total expenditure between
its members, usually equally or in proportion to some measure of needs, and then
treat each individual as the unit in the poverty and welfare calculations. Since it is
hard to think of households as repositories for well-being, even in the best case
where their membership does not change, an individual basis for measurement is
conceptually clearer and is the recommendation carried throughout this book. One
difficulty is that the assumption of equal division, or of each according to her or
his needs, is bound to understate the true dispersion of consumption among indi-
viduals, and thus understate inequality and poverty. As pointed out by Haddad and
Kanbur (1990), who have also investigated the magnitude of the biases, the assum-
ed equal distribution within the household could be reached from the unknown
true one by a system of equalizing transfers, so that any welfare measure that
respects the principle of transfers will be overstated (or understated if a poverty
measure) using household data.

It is also necessary to recognize that children do not have the same needs as
adults. Assigning household PCE to each person gives too little to adults—especi-
ally those who do heavy manual work—and too much to children. If there are
economies of scale, PCE will understate individual welfare levels, even if all house-
hold members are adults. Attempts to do better than PCE measures for individuals
are discussed in Chapter 4, where I take up the question of allocation within the
household, and the construction of “equivalence scales,” numbers that are the
theoretically appropriate deflators to move from household to individual welfare.
However, I should point out in advance that the equivalence scale literature is still
very far from providing satisfactory answers to these questions, and that the use of
household PCE assigned to individuals is still best practice. Even so, it is wise to
remain skeptical of estimates that appear to be purely statistical but rely heavily on
arbitrary assignments, such as the number of children in poverty, or the average
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living standards of the elderly. The elderly rarely live by themselves in poor
countries, and children do not do so anywhere, so that estimates of their welfare
are determined as much by assumption as by measurement and should be treated
as such. Measures of the fraction of children in poverty, or of women in poverty,
are particularly fragile and international comparisons of such concepts cannot be
treated seriously.

The choice of time period, like all of these issues, is partly one of theory and
partly one of practicality. In theory, we need to decide the reference period for
welfare measurement, whether someone is poor if they go without adequate con-
sumption or income for a week, a month, or a year. The reference period can be
shorter for consumption than for income, and if we use income, the choice of
reference period will depend on what mechanisms—credit markets, familial sup-
port—are available to help people ride out fluctuations in income. In practice, long
reference periods require either multiple visits or recall questions; the former are
expensive and the latter risk measurement error. Note also that, if poverty and
welfare measures are to be comparable across countries or over time, the reference
periods must be the same. Because the dispersion of both consumption and income
decrease the longer is the reference period, both the extent of inequality and pov-
erty will be larger at short than at long reference periods.

One of the most difficult practical issues in estimating poverty and inequality
is to separate genuine dispersion from measurement error. If we start from any
distribution of welfare and add measurement errors that have zero mean and are
uncorrelated with the true values, the new distribution is a spread-out version of
the original one, so that if our measures respect the principle of transfers, measured
inequality will be higher and social welfare lower. Poverty measures that satisfy
the principle of transfers will also be higher. For the headcount, which does not
satisfy the principle, matters are more complicated and measurement error can bias
the count in either direction. If the country is wealthy enough for the poverty line
to be below the mode, the addition of mean-zero measurement error will cause the
measured headcount to overstate the number in poverty, and vice versa. Similarly
if we try to assess the persistence of poverty using panel data by seeing who re-
mains in poverty and who escapes it, measurement error will exaggerate the extent
of mobility, and make poverty seem less persistent than is truly the case. In most
cases, we have little idea of the magnitude of measurement error, or how much of
the variance of consumption or income changes is noise as opposed to signal.
However, and bearing in mind the problems of estimating consumption and in-
come in surveys in developing countries, it is always wise to consider the robust-
ness of conclusions to the presence of substantial measurement error.

Example 1. Inequality and poverty over time in Céte d’Ivoire

This subsection applies some of the foregoing concepts to Living Standards data
from C6te d’Ivoire for the four years 1985 through 1988, focussing on change
over time, while the next subsection uses data from South Africa in 1993 to look
at differences by race. The translation of the formulas into numbers is essentially
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straightforward, but it is nevertheless useful to work through the exercise, partly
to see how the theory can be used to help interpret the numbers, and partly to see
some of the practical problems that are not dealt with by the theory.

As always, a good place to start is with standard summary statistics, some of
which are shown in Table 3.1. In fact there is a good deal of work prior to this,
checking out the data, and looking for and investigating outliers, to which mea-
sures of dispersion can be very sensitive. This sort of preliminary work is greatly
aided by suitable methods of graphing the data; for example, the “oneway” com-
mand in STATA plots a small vertical bar for each observation so that it is easy to
see outliers in relation to the main body of the data. In line with the foregoing
arguments, I have chosen consumption rather than income as the welfare measure,
and I use the estimate of total monthly household expenditure calculated by the
World Bank and provided on the diskettes of the Cdte d’Ivoire LSs.

I have also used the “corrective weights” provided by the Bank. These were
calculated after the surveys were complete, and are designed to correct some
known deficiencies in the design that led to over- or undersampling. The most
controversial component of the weight “corrects” the surveys’ estimates of house-
hold size. In the raw data, average household size declines over time at an implau-
sible rate, something that could happen if large households were oversampled in
the first survey, (see Coulombe and Demery 1993 and Demery and Grootaert
1993), or through progressive quality deterioration if enumerators became better
at avoiding the very large households that can take many hours to interview (see
Coulombe, McKay, and Pyatt 1993). The weights are based on the former hypoth-
esis, and are controversial because they depend on its correctness; it is far from
clear that they can be interpreted as inverse sampling probabilities. Unfortunately,
inferences about per capita expenditures in Cdte d’Ivoire are sensitive to these
corrections (see again Coulombe, McKay, and Pyatt).

The first column in the table shows the weighted average over the households
in each survey of total annual expenditures in real terms. The units are thousands
of Central African francs, with 1,000 CFAF worth between three and four U.S.
dollars at purchasing power parity, and the prices are those of Abidjan in 1985. I

Table 3.1. Consumption measures, Cote d’Ivoire, 1985-88
(thousands of CFAF per month)

Total house- PCE
hold Household Individual Standard
Year expenditure Household size basis basis error
1985 1,548 6.51 292.2 237.8 8.75
1986 1,400 6.25 269.9 2239 8.16
1987 1,345 6.20 264.3 217.0 9.13
1988 1,067 6.16 202.3 173.1 6.09

Note: There are 1,588 households in the 1985 sample, and 1,600 in 1986-88. Prices are those of Abidjan
in 1985, and nominal amounts are converted to real terms using the regional price indexes for each year
from Grootaert and Kanbur (1992). Standard errors are computed from the “svymean” command in
STATA, with the regions as strata and the clusters as PSUs.

Source: Author’s calculations based on CILSS, 1985-88.
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have used Grootaert and Kanbur’s (1992) price indexes for the four years and five
regions—Abidjan, Other Cities, East Forest, West Forest, and Savannah—to con-
vert the nominal survey measures to constant prices. Mean household total expen-
diture declines over the four years; indeed real per capita GDP declined in Cote
d’Ivoire over these years in line with the experience of many other African econo-
mies during a period of falling world prices for their exports of primary commodi-
ties, mainly cocoa and coffee in the case of Cote d’Ivoire. The second column
shows average household size; even after the correction there is some decline over
time. The third column shows the (weighted) average over households of PCE
which also shows a decline in every year, so that the decline in household size is
not sufficient to offset the decline in the total.

The average of household PCE, although often used as a welfare measure, is not
what we want here; welfare resides in individuals, not households, and we need to
recompute the averages on an individual basis. This is done in Table 3.1 by assign-
ing the household levels of PCE to each individual and then averaging over the
individuals. Of course, this is just a reweighting of the household data, so that if
household # has n, members and PCE is x,, then the average of PCE on an indivi-

dual basis is H H
(3.15) x=Xwnx/!Xwn,
h=1 h=1

where H is the total number of households and w, is the household inflation factor
or weight. Note that the weights and household size appear symmetrically in
(3.15), so that is often convenient for calculation to redefine the weights by multi-
plying by household size, or household size by multiplying by the weights. Since x,n,
is simply total household expenditure, (3.15) implies that the individual average of
PCE is the ratio of (weighted) average total household expenditure to (weighted)
average household size, so that column 4 in Table 3.1 is the ratio of column 1 to
column 2. Estimated standard errors for mean individual-level PCE are given in the
final column; there are calculated using the "svymean" or "svyratio" commands in
STATA, and take the regions as strata—although the CILSS was only implicitly strati-
fied by region—and the clusters as PSUs.

In the unlikely event that we are unconcerned with distributional issues, the
averages of individual PCE would be adequate welfare indicators. But to move
from mean consumption levels to social welfare, we must also calculate inequality
measures, and these are shown in Table 3.2. Once again, these estimates are esti-
mates of inequality between individuals, not between households. The conceptu-
ally most straightforward way of going from one to the other is to "replicate" the
observations in the data set, with one replication of the household PCE level for
each individual in the household, and then to use the inequality formulas given
above. In practice, this is both clumsy and inefficient compared with simple
weighted estimates. Only in the case of the Gini coefficient is the calculation less
than obvious. For example, to use household data to calculate the Atkinson in-
equality measure on an individual basis, we calculate the level of social welfare
according to the appropriately modified version of (3.4). Each sample household
with n, members represents w, n, individuals n the population, so that
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1/(1-¢)

q 1
Yw,nx, *
(3.16) bt

H
Ywyn,
h=1

(When € is 1, so that (3.16) is not defined, the calculation is replaced by exponent-
iating the weighted averages of the logarithms.) The Atkinson inequality index is
then calculated by dividing (3.16) by the (weighted) mean and subtracting the
result from one.

Calculation of the Gini coefficient from equation (3.7b) is only slightly more
complicated by the need to convert household ranks to individual ranks. Since
everyone in each household is assumed to have the same PCE, we can order them
within the household in any way we choose. The first person in the best-off house-
hold is then given rank 1, the first person in the second household rank 1 +n,,
where n, is the number of people in the first household, and so on. As before, if
there are nonzero survey weights, the simplest treatment is to pretend that there
are, not n,, but w,n, people in household 4. Hence, and starting from p, = 1, the
rank of the first person in household # +1 can be defined recursively by

3.17) Pret = Py * Wy

The average rank of all the persons in household % is therefore

(3.18) B, = P+ 0.5(w,n, 1)

so that the Gini coefficient for individual-level PCE is given from (3.7b) by

N+1 2 i
= - Yw,nx +05(w,n, -1
N-1 NWN-lx 1 " " by + 050wym, = D]

(3.19) Y

with the best-off household coming first and the ranks calculated from (3.17).
Since these inequality measures are independent of the scale of x, they will not

be changed by deflation by the price index, provided that the price index does not

vary from one household to another. Note too that, because the Gini coefficient is

Table 3.2. Inequality measures between individuals, Céte d’Ivoire, 1985-88

Gini coef- Coeff. vari- Atkinson measures
Year ficient S.d. of logs ation €=0.5 €e=10 €=2.0
1985 0.383 0.716 0.807 0.118 0.223 0.394
1986 0.358 0.627 0.786 0.103 0.190 0.382
1987 0.381 0.665 0.894 0.119 0.215 0.444
1988 0.345 0.615 0.745 0.091 0.180 0.357

Note: Measures of inequality use household PCE attributed to individuals and are calculated on an
individual basis using corrective weights. S.d. is standard deviation and Coeff. variation the coefficient
of variation.

Source: Author’s calculations based on CILSS, 1985-88.



WELFARE, POVERTY, AND DISTRIBUTION 155

invariant to scaling of population size—doubling the number of people with each
x has no effect on the index—the calculations are unaffected by any rescaling of
the survey weights.

The different measures are in broad agreement; all show that inequality is
lowest in 1988, next lowest in 1986, and highest in 1985 and 1986. The Gini, the
standard deviation of logs, and the Atkinson measure with € =1 rank 1987 as more
equal than 1985, while the reverse judgement is made by the coefficient of vari-
ation, and the Atkinson measures with € set at either O or 2. The Atkinson mea-
sures show more inequality the larger is the inequality aversion parameter € but,
like the other measures, all rank 1988, 1986, and either 1985 or 1987 in the same
way. Note that there is no simple relationship between the value of € and the
rankings; the distribution in 1985 is more equal than that in 1987 when € is 0.5 or
2, but the reverse is true when € is 1. Recall that inequality should always be inter-
preted jointly with the mean in order to assess changes in aggregate well-being.
Even so, the decline in inequality from 1985 to 1988, although substantial by some
of the measures, is not enough to have raised equality by the amount required to
offset the decline in PCE and maintain the level of social welfare.

Table 3.3 reports four poverty measures based on individual PCE, the head-
count, the poverty gap ratio, the Foster-Greer-Thorbecke measure with « set at 2,
and Sen’s poverty measure. There are no new difficulties of calculation here; the
headcount is simply the fraction of people who live in households whose house-
hold PCE is less than equal to the poverty line, while P, and P, are calculated as
weighted averages in the usual way. The Sen index is calculated according to
(3.12) with the Gini for the poor calculated as described above but for the limited
population of those in poverty. I have chosen a poverty line to match some arbit-
rary but reasonable percentile in the base year and then held it fixed in real terms
in the other years. In 1985, (just over) 30 percent of people were in households
whose PCE was below 128,600 CFAF—an amount that is close to the useful (if
arbitrary) guideline of one U.S. dollar per head per day—and I use this figure as
the poverty line. Table 3.3 also shows bootstrapped standard errors for these
poverty measures. These come from 100 bootstrap replications and take into
account the clustered structure of the CILSS (see the Code Appendix for the STATA
code for the bootstrap and for the inequality and poverty measures.)

Table 3.3. Measures of individual poverty, Cote d’Ivoire, 1985-88
(bootstrapped standard errors in brackets)

Headcount Poverty-gap FGT index, Sen poverty
Year ratio, P, ratio, P, P, index, Py
1985 0.300 (.030) 0.098 (.013) 0.045 (.007) 0.134 (.017)
1986 0.300 (.019) 0.082 (.007) 0.032 (.043) 0.112 (.009)
1987 0.348 (.025) 0.101 (.013) 0.043 (.008) 0.140 (.017)
1988 0.459 (.030) 0.142 (.016) 0.063 (.010) 0.196 (.021)

Note: Measures of poverty are based on household PCE attributed to individuals, and are calculated on an

individual basis.
Source: Author’s calculations based on CILSS, 1985-88.
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These Ivorian estimates provide a good example of the fact that poverty does
not always move in the same direction as average PCE. Although average PCE fell
in every year from 1985 to 1988, the poverty measures decline from 1985 to 1986,
only rising thereafter. The headcount ratio hardly changes from 1985 to 1986, but
the decline is clear in the other measures. Although the mean of PCE fell between
the two years, the fraction of people below the poverty line remained virtually
unchanged and, as shown by the behavior of P, the average PCE among the poor
rose in spite of the fall in the overall average PCE. That people at the bottom of the
distribution did better than the average presumably also contributed to the declines
in inequality in Table 3.2. Note also the sensitivity of the poverty rankings of 1985
relative to 1987. The latter year has a large fraction of poor than the former, but
once we take into account the average of PCE among the poor and its distribution
between them, the increase in poverty is less, and as measured by P,, poverty
declines.

It should be emphasized once again that these results on poverty, and the
poverty rankings of the years are in accord with the Atkinson social welfare ap-
proach, provided enough weight is given to the poor. As argued in the theoretical
section, there is little conceptual difference between social welfare measurement
and poverty measurement, provided always that inequality indexes are interpreted
jointly with means, and not on their own. The main difference between the two
approaches is in the way the weighting is done, with everyone getting some weight
in the social welfare function, although the poor get relatively more, while the non-
poor get no weight in the poverty indices.

Example 2. Inequality and poverty by race in South Africa

The South African Living Standards Survey collected data at the end of 1993,
shortly before the elections that established the government of President Nelson
Mandela. The survey was intended to establish a picture of living standards and
poverty on the eve of the elections, and to serve as a baseline against which future
progress could be assessed. Because there have been no subsequent LSMS surveys
in South Africa, these data cannot be used to track living standards over time, but
they provide a snapshot of living standards by race at the end of the apartheid era.
Table 3.4 brings together all of the statistics on the four racial groups. The top
panel shows very large differences in levels of living, particularly between Blacks
and Whites; the mean of individual PCE is almost seven times larger for Whites
than for Blacks. The second panel shows that the ranking of groups by inequality
is precisely the reverse of the ranking by average. Blacks are not only poorer than
Whites, but their living standards are more unequally distributed. Indeed the Gini
coefficient of 0.34 for Whites is low by any standards. As a result, even the seven-
fold difference in mean PCE understates the difference in average welfare between
Blacks and Whites. For example, if we measure social welfare as mean PCE multi-
plied by one minus the Gini, Whites are 8.4 times better-off than Blacks. The dif-
ferences between the groups also gives very high measures of inequality for the
country as a whole so that, for example, the overall Gini coefficient is 0.59.
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Table 3.4. Welfare measures by race, South Africa, 1993

Measure Blacks Coloreds Indians Whites All
Means

Total household exp. 1,053 1,783 3,202 4,615 1,089
Household size 4.78 4.67 4.38 3.01 444
PCE (household) 325 483 828 1,793 615
PCE (individual) 220 378 732 1,531 406
Standard error 8.0 32.8 88.4 80.8 26.4
Inequality

Gini 0.449 0.412 0.377 0.336 0.586
S. d. of logarithms 0.798 0.734 0.647 0.594 1.042
Coefficient of variation 1.062 0.994 0.924 0.733 1.563
Atkinson, € =0.5 0.162 0.136 0.118 0.089 0.276
Atkinson, € =1.0 0.289 0.247 0.210 0.166 0.460
Atkinson, € =2.0 0.530 0.497 0.460 0.349 0.710
Poverty

Headcount ratio P, 0.317 0.080 0.0 0.0 0.250
Poverty gap ratio P, 0.106 0.019 0.0 0.0 0.083
FGT P, 0.049 0.008 0.0 0.0 0.039
Sen measure Pg 0.144 0.029 0.0 0.0 0.113

Notes: Inequality and poverty are based on imputing household PCE to individuals. The poverty line is set
at a PCE of 105 rand per month. Numbers of observations vary across statistics because of missing values;
there are approximately 6,500 African, 700 Colored, 250 Indian, and 1,350 White households in the
survey,

Source: Author’s calculations from South African Living Standards Survey, 1993.

The poverty measures in the third panel use a poverty line of 105 rand per
month per person. This is much lower than poverty lines commonly discussed in
South Africa, but is approximately equal to $1 (U.S.) per person per day, the same
line I used for Cote d’Ivoire. More than 30 percent of Africans have less than even
this very low cutoff; there are no Whites or Indians in poverty. As has often been
noted, apartheid was a successful welfare state for the Whites, keeping incomes
high, inequality low, and minimizing poverty. The majority of South Africa’s
citizens were less fortunate.

Exploring the welfare distribution: inequality

The welfare and poverty measures of the previous subsections are designed to
aggregate the detailed distribution of welfare to a single number; provided that we
know exactly the measure that we prefer, and provided that there is uncertainty
neither about how to weight people at different income levels, nor about the level
of the poverty line, then the summary measures are all we need. However, there is
often substantial uncertainty about how much weight to give to the poor relative to
the rich, and there is always a good deal of uncertainty about the poverty line. In
consequence, it is often a good idea to explore the robustness of social welfare
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measures to parameters about which we are unsure. At the same time, the reduc-
tion of a distribution to a single number may be more aggregation than we want,
and more fundamental insights into levels of living can often be obtained from
graphical representations of either the whole distribution or of some part of it. I
begin with inequality.

The most familiar graphical tool for examining the distribution of income or
consumption is the Lorenz curve, which is a plot of cumulative fraction of popula-
tion—starting from the poorest—on the x-axis against cumulative fraction of re-
sources on the y-axis. Three (imaginary) distributions are sketched in Figure 3.3.
If resources were equally distributed, with everyone receiving the same, the Lor-
enz curve would be the 45-degree line, thus labeled the line of complete equality,
whereas the case of complete inequality, with the richest person having everything,
would generate a Lorenz curve running along the x-axis with a right angle at
(100,0) to terminate at (100,100). Lorenz curves have positive slopes and positive
second derivatives. At point p on the horizontal axis, the slope of the curve is the
ratio to mean x of the value of x below which lie fraction p of the population;
formally, if the distribution function of x is F(x) with mean p, the slope of the
Lorenz curve at p is F "'(p)/p. This implies that the curves attain their maximum
distance from the 45-degree line where the cumulative proportion of people is
equal to the fraction of people with x below the mean (see Kakwani 1980, ch. 3,
for this and further results).

The Gini coefficient is also closely associated with the Lorenz curve. It is the
area between the curve and the 45-degree line as a fraction of 0.5, which is the
total area under the 45-degree line. The Lorenz curve is unaffected by multiplying

Figure 3.3. Lorenz curves illustrating Lorenz dominance
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everyone’s allocation by a positive number, and so can tell us nothing about the
mean of the distribution. Apart from this, all the information in the distribution is
contained in the Lorenz curve so that, provided we know the mean, it is possible,
for example, to recover the density or distribution function from the Lorenz curve.

As first shown by Atkinson (1970), Lorenz curves play a very important role
in characterizing the robustness of inequality measures. If two different Lorenz
curves do not cross, as is the case for distributions B and either A or C in Figure
3.3, the lower curve can always be transformed into the upper curve by a series of
equalizing transfers, by each of which welfare is transferred from a richer to a
poorer individual. In consequence, when two Lorenz curves do not cross, the
upper one represents an unambiguously more egalitarian distribution, one that will
show a lower level of inequality using any measure of inequality that respects the
principle of transfers. In Figure 3.3, the two distributions A and C cross one an-
other (twice as shown), so that there is no unambiguous ranking of inequality
without committing to more specific inequality measures. Distribution C is more
equal among both the poorest and the richest, but is more unequal in the middle of
the distribution than is distribution A. When one Lorenz curve is everywhere above
another, we say that the distribution corresponding to the upper curve Lorenz
dominates the distribution represented by the lower curve. Lorenz domination does
not give a complete ordering of distributions; when Lorenz curves cross, neither
distribution dominates the other.

Because the Lorenz curves are unaffected by the mean of the distribution, they
cannot be used to rank distributions in terms of social welfare, only in terms of
inequality. This deficiency is easily repaired by looking at “generalized” Lorenz
curves—a concept introduced by Shorrocks (1983). The horizontal axis for the
generalized Lorenz curve is the same as that for the Lorenz curve, the cumulative
fraction of the population, but the vertical axis, instead of showing the cumulative
share of income, wealth, or consumption, shows the cumulative share multiplied
by the mean, so that a Lorenz curve can be converted into a generalized Lorenz
curve by multiplying by mean welfare. Clearly, for any single Lorenz curve, this
is only a change of scale, and has no effect on its shape; generalized Lorenz curves
are used for comparing different distributions with different means and thus with
different aggregates. If the generalized Lorenz curve in one period lies above the
generalized Lorenz curve in another period, it implies that for all p from 0 to 100,
the poorest p percent of the population have more resources in total in the first
period’s distribution which will therefore be preferred by any equity respecting
social welfare function. The poorest person has more, there is more in aggregate,
and more generally, each quantile of the distribution is higher. Hence an equity
respecting social welfare function will always prefer a distribution whose general-
ized Lorenz curve lies above another.

The generalized Lorenz curves corresponding to the three distributions in
Figure 3.3 are shown in Figure 3.4, where I have assumed that A and B have the
same mean, but that mean x in distribution C is higher. As drawn, the effect is to
“lift” the distribution C clear of distribution 4, so that C now dominates A by the
generalized Lorenz criterion, although not by the Lorenz criterion. As a result,



160 THE ANALYSIS OF HOUSEHOLD SURVEYS

Figure 3.4. Generalized Lorenz curves for Lorenz curves in Figure 3.3
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distribution C will be preferred to A by any equality-preferring social welfare
function. The generalized Lorenz curve of C now crosses that of B, so that the
social welfare ranking of the two will depend on the precise social welfare func-
tion used, on the tradeoff between more equality in B and the more mean in C.
These examples should make it clear once again that inequality by itself is not a
measure of welfare. If the mean of distribution C were further increased so that the
generalized Lorenz curve for C were everywhere above that of B, we would have
a situation where one distribution is preferred to another by all equity respecting
social welfare functions, even though it is more unequal according to all measures
of inequality that satisfy the transfer principle.

Lorenz curves and inequality in South Africa and Céte d’Ivoire

Figure 3.5 shows three Lorenz curves for the individual PCE distributions in South
Africa in 1993 for the whole population—the outer curve—for Blacks—the bro-
ken line—and for Whites—the innermost line. These curves show, for example,
that the poorest 20 (50) percent of South Africans receive only 3 (13) percent of all
of PCE, that the poorest 20 (50) percent of Blacks receive 5 (20) percent of all PCE
received by Blacks, while the poorest 20 (50) percent of Whites receive 7.5 (28)
percent of all PCE received by Whites. Also important to note is that the Lorenz
curve for Blacks lies everywhere outside the Lorenz curve for Whites. As a result,
the unanimous ranking in Table 3.4, where the distribution of PCE among Whites
is shown as more equal than that among Blacks by all the measures, is not a special
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Figure 3.5. Lorenz curves for individual PCE by race, South Africa, 1993
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feature of those particular measures but will be repeated for any other inequality
measure that satisfies the principle of transfers. Put differently, provided we re-
spect the principle of transfers, there can be no dispute that there is more inequality
among Blacks than Whites.

A second example comes from Cote d’Ivoire. Figure 3.6 shows Lorenz curves
for the four years of CILSS data, but in a slightly different way from usual. It is
frequently the case with empirical Lorenz curves—as opposed to the theoretical
curves in Figure 3.3—that different curves are very close to one another and are
not easily told apart by inspection. That this was not the case for South Africa is
because of that country’s extreme differences in inequality between the races;
Whites and Blacks are not only far apart in average living standards, but also in the
dispersion of their living standards. Changes in inequality over time are likely to
be less marked, and in Cdte d’Ivoire from 1985-88, the Lorenz curves do not
move much. Differences are more easily seen if we plot, not the Lorenz curve
itself, but the distance of the Lorenz curve from the 45-degree line, and these cur-
ves are plotted in Figure 3.6. Because signs are changed, the higher curves are now
those with the greatest inequality.

The figure shows why the results in Table 3.2 come out as they do and they tell
us what would happen if we were to work with alternative measures of inequality.
The curve for 1988 lies entirely below the curve for 1986, and both lie below the
curves for 1985 and 1987; these last cannot be ranked relative to one another, but
cross at around the 70th percentile of the population. Below the 70th percentile,
the 1985 curve is higher because the poorest part of the distribution was poorer in
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Figure 3.6. Transformed Lorenz curves, Céte d’Ivoire, 1985-88
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1985 than in 1987. Above the 70th percentile, which is a part of the distribution
about which we may be less concerned, the curve for 1985 is lower because the
share of PCE in the hands of the best-off people is less. As we saw in Table 3.2, all
the measures agreed that 1988 was more equal than 1986, and that both were more
equal than either 1985 or 1987, while disagreeing on the relative ranking of those
two years. This is exactly what must happen given the shapes of the Lorenz curves,

Table 3.1 shows that the average level of PCE is falling over time, so that a
graph of generalized Lorenz curves over time will be one in which the standard
Lorenz curves are progressively rotated clockwise from the origin. Because the
changes in the mean are large relative to the changes in inequality, the generalized
Lorenz curves move downward over time, with 1986 below 1985, 1987 below
1986, and 1988 below 1987. A small exception is that the generalized Lorenz
curve for 1986 is slightly higher than that for 1985 at the very bottom of the distri-
bution; the poorest people had absolutely more in 1986 than a year earlier, not just
a larger share. This apart, social welfare fell in Cote d’Ivoire from 1985 to 1988,
and the conclusion does not depend on how we measure inequality nor on our
degree of aversion to it.

*Stochastic dominance

The mechanics of ranking welfare distributions are clarified by reference to the
concept of stochastic dominance. While it is possible to read discussions of in-
equality and of poverty without knowing anything about stochastic dominance, a



WELFARE, POVERTY, AND DISTRIBUTION 163

deeper understanding can be obtained with the aid of the few straightforward
definitions and results given in this subsection. For those who wish to skip this
material, I shall label the stochastic dominance results when I come to them, so
that it is possible to move directly to the next subsection without loss of continuity.

Stochastic dominance is about ranking distributions, and the Lorenz dominance
discussed above is only one of a set of definitions and results. All work by treating
consumers as a continuum, so that instead of dealing with concepts such as the
fraction of people whose consumption (say) is less than x, we think of x as being
continuously distributed in the population with CDF F(x). We shall typically be
concerned with the comparison of two such (welfare) distributions, whose CDFs |
write as F,(x) and F,(x), and we want to know whether we can say that one is
“better” than the other, in some sense to be defined.

The first definition is first-order stochastic dominance. We say that distribution
with CDF F,(x) first-order stochastically dominates distribution F,(x) if and only
if, for all monotone nondecreasing functions a(x)

(3.20) f a(x)dF,(x) 2 f a(x)dF,(x)

where the integral is taken over the whole range of x. The way to appreciate this
definition is to think of «(x) as a valuation function, and monotonicity as meaning
that more is better (or at least no worse.) According to (3.20), the average value of
o is at least as large in distribution 1 as in distribution 2 no matter how we value
x, so long as more is better. In consequence, distribution 1 is “better,” in the sense
that it has more of x, and it stochastically dominates distribution 2.

There is a useful result that provides an alternative characterization of first-
order stochastic dominance. The condition (3.20) is equivalent to the condition
that, for all x,

(3.:21) Fy(x) 2 Fy(x)

so that the CDF of distribution 2 is always at least as large as that of distribution 1.
(The proof of the equivalence of (3.20) and (3.21) is straightforward, and is left as
an exercise. But we can go from (3.20) to (3.21) by choosing a(x) to be the
function that is zero for x < a and 1 thereafter, and we can go from (3.21) to (3.20)
by first integrating the latter by parts.)

Note that distribution 1, which is the dominating distribution, is on the left-
hand side of (3.20), but on the right-hand side of (3.21). Intuitively, (3.21) says
that distribution 2 always has more mass in the lower part of the distribution,
which is why any monotone increasing function ranks distribution 1 ahead of
distribution 2.

The second definition is of second-order stochastic dominance, a concept that
is weaker than first-order stochastic dominance in that first-order dominance
implies second-order dominance, but not vice versa. We say that distribution
F,(x) second-order stochastically dominates distribution F,(x) if and only if, for
all monotone nondecreasing and concave functions a(x), the inequality (3.20)
holds. Since monotone nondecreasing concave functions are members of the class
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of monotone nondecreasing functions, first-order stochastic dominance implies
second-order stochastic dominance. In first-order stochastic dominance, the func-
tion a(x) has a positive first derivative; in second-order stochastic dominance, it
has a positive first derivative and a negative second derivative.

When a(x) is concave, we can interpret the integrals in (3.20) as additive
social welfare functions with e(x) the social valuation (utility) function for indi-
vidual x. Given this interpretation, second-order stochastic dominance is equiva-
lent to social welfare dominance for any concave utility function. As we have
already seen, social welfare dominance is equivalent to generalized Lorenz domi-
nance, so we also have the result that generalized Lorenz dominance and second-
order stochastic dominance are equivalent. For distributions whose means are the
same, second-order stochastic dominance, welfare dominance, and (standard) Lor-
enz dominance are the same.

Second-order stochastic dominance, like first-order stochastic dominance, can
be expressed in more than one way. In particular, second-order stochastic domi-
nance of F,(x) over F,(x) implies, and is implied by, the statement that, for all x,

(3.22) Dy(x) = sz(t)dt N fFl(t)dt = D,(x)

so that second-order stochastic dominance is checked, not by comparing the CDFs
themselves, but by comparing the integrals beneath them. We shall see examples
of both comparisons in the next subsection. As we might expect, the fact that first-
order stochastic dominance implies second-order stochastic dominance is also ap-
parent from the alternative characterizations (3.21) and (3.22). Clearly, if (3.21)
holds for all x, (3.22) must also hold for all x. However, when discussing poverty,
we will sometimes want a restricted form of stochastic dominance in which (3.21)
is true, not for all x, but over some limited range z, < x < z,. But when (3.21) holds
in this restricted form it no longer implies (3.22) except in the special case when z,
is the lowest possible value of x (see (3.27) and (3.28) below).

Further orders of stochastic dominance can be defined by continuing the se-
quence. For first-order dominance, distributions are ranked according to the in-
equality (3.20) where a(x) has a nonnegative first derivative. For second-order
dominance, the o (x) function has nonnegative first derivative and nonpositive
second derivative. Distribution F, (x) third-order stochastically dominates distri-
bution F,(x) when (3.20) holds for all functions & (x) with nonnegative first deri-
vative, nonpositive second derivative, and nonnegative third derivative. And so on
in the sequence. Just as second-order dominance can be tested from (3.22) by
comparing D,(x) and D,(x), themselves the integrals of F,(x) and F,(x),
whose relative rankings tells us about first-order dominance, so can third-order
dominance be tested using the integrals of D, (x) and D, (x).

Exploring the welfare distribution: poverty

If robustness analysis is desirable for social welfare and inequality comparisons,
it is even more so for the measurement of poverty if we are not to be hostage to an
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ill-defined and arbitrarily selected poverty line. At the least, we need to explore the
sensitivity of the various poverty measures to the choice of z, although when we do
50, it should not be a surprise that we are thereby led back to something closely
akin to the social welfare approach. If we have literally no idea where the poverty
line is, and it is even possible that everyone is poor, poverty measures have to give
at least some weight to everyone, although as always, poorer individuals will get
more weight than richer ones. But this is exactly what a standard social welfare
function does, so that the social welfare approach will only differ from the poverty
approach when we can set some limits on permissible poverty lines.

Start from the headcount ratio, and consider what happens as we vary the
poverty line z. Since P, is the fraction of the population whose welfare level is
below z, we have

(3.23) Py(z;F) = F(2)

where the notation on the left-hand side emphasizes not only that the headcount is
a function of the poverty line z, but also that it is a function (technically a func-
tional) of the distribution F. If we have two different distributions F, and F,,
relating to different years, sectors, or countries, and we want to know which shows
more poverty and the extent to which the comparison depends on the choice of
poverty line z, then (3.23) tells us that if, for all poverty lines z

(3.24) Fi(z) > Fy(2)

the headcount will always be higher for the first distribution than the second.
Hence, all we have to do to test the robustness of the headcount ratio is to plot the
CDFs of the two distributions that we are interested in comparing, and if one lies
above the other over the range of relevant poverty lines, then the choice of poverty
line within that range will make no difference to the outcome.

In the language of the previous subsection, the poverty ranking of two distri-
butions according to the headcount ratio is robust to all possible choices of poverty
line if, and only if, one distribution first-order stochastically dominates the other.
In practice, we usually have some idea of the poverty line, or are at least able to
rule out some as implausible, so that the more useful requirement is that (3.24)
hold over some relevant range, which is a restricted form of stochastic dominance.

Figures 3.7 and 3.8 show part of the cumulative distributions for individual PCE
in South Africa and in Cdte d’Ivoire for 1985 through 1988. Since poverty lines at
the very top of the distribution are usually implausible—even for a poor country—
it is not necessary to show the complete range of PCE levels. In the South African
case in Figure 3.7, the cutoff of 2,000 rand per capita per month excludes about 20
percent of Whites, but no one else. As was the case for the Lorenz curves, the
extraordinary inequalities in South Africa produce an unusually clear picture. The
four distribution functions are quite separate so that, no matter what poverty line
we choose, there will be a higher fraction of people in poverty among Blacks than
among Coloreds, a higher fraction among Coloreds than among Indians, and a
higher fraction among Indians than among Whites.
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Figure 3.7. Distribution functions of individual PCE by race,
South Africa, 1993
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The situation for Cote d’Ivoire is less clear because several of the distribution
functions cross. Here I have excluded people living in households with per capita
monthly expenditure of more than 300,000 CFAF, which is two and a half times the
poverty line used in constructing Table 3.3. Given the declines in PCE over time,
it is no surprise that, over most of the range, the curves are higher in the later years
so that, for most poverty lines, the fraction of poor people will be increasing from
1985 through to 1988. However, around the poverty line of 128,600 CFAF used in
Table 3.3, the distribution functions for the first three years are very close and, at
the lowest values of PCE, the curve for 1985 lies above that for 1986 and 1987. As
we have already seen in making inequality comparisons, the poorest did better in
1985 than in 1986, even though average PCE fell.

To examine the robustness of the other poverty measures, consider the “poverty
deficit curve,” defined as the area under the CDF up to some poverty line z

(3.25) D(z;F) = f F(x)dx.

0
Why this measure is useful is revealed by integrating the right-hand side of (3.25)

to give P ,
(3.26) D(z:F) = 2F(@) - [fOdx = 2F@)(1 'HZ—) = zP(z;F)

0
where, as before, p ” is the mean welfare among the poor and P\(z; F) is the pov-
erty-gap measure of poverty. Equation (3.26) establishes that we can use the
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Figure 3.8. Distribution functions of individual PCE, Céte d’Ivoire, 1985-88
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poverty deficit curve to examine the robustness of the poverty-gap measure to
different choices of the poverty line in exactly the same way that we used the CDF
to examine the robustness of the headcount ratio. If the poverty deficit curve for
one distribution lies above the poverty deficit curve of another, the first distribu-
tion will always have more poverty according to the poverty-gap measure.

Figure 3.9 shows the lower segments of the poverty deficit curves for the Ivor-
ian data. These curves, which are marked in the same way as Figure 3.8, show that
the poverty-gap ratio is higher in 1988 than in 1987 for a range of poverty lines,
results that establish some robustness for the estimates in Table 3.3. The poverty
deficit curve for 1987 is above that for 1986 and, except for low poverty lines,
above that for 1985. Given previous results, the crossing of the 1985 and 1986
curves is to be expected; 1986 was better than 1985 at the bottom of the distribu-
tion, but worse on average.

It is possible to continue this type of robustness analysis beyond the headcount
and poverty-gap ratios to the other poverty measures. However, it is better at this
point to look at the pattern that is emerging, and once again to link the analysis of
poverty back to the social welfare function. Note first that if, as happens in South
Africa, or in Céte d’Ivoire for 1988 and 1987, one of the distribution functions had
been higher than another from O up to some plausible upper limit for the poverty
line z*, say, then the same would automatically have been true for the poverty
deficit curves. Formally, if for two distributions F| and F,

3.27) Fi(x) 2 Fy(x), 0sxx<z *
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Figure 3.9. Poverty deficit curves, Céte d’Ivoire, 1985-88
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then

(3.28) D(z;F)) = fF,(x)dx 2 sz(x)dx = D(z;F,), 0szsz".
0 0

Hence if the distributions do not cross before the maximum possible poverty line,
then not only are the headcount ratios robust to the choice of line, but so are the
poverty-gap ratios. Indeed, if we were to push the analysis a stage further, and look
at the area under the deficit curve, the resulting curves would not cross if the
poverty deficit curves did not cross, so that measures like P, would also be robust
to choice of the line. Of course, these results only work one way; it is possible for
the distribution functions to cross and for the poverty deficit curves not to do so,
as indeed is the case for 1987 versus 1986 in Cdte d’Ivoire. But if we find that the
distribution functions do not cross, we need look no further because all the poverty
measures will be robust. If they do cross but the poverty deficit curves do not, then
any measure that is sensitive to the depth of poverty will be robust, and so on.

While these results that take us from one type of robustness to another are
useful, they are not always exactly what we need. As emphasized by Atkinson
(1987), we may have a lower as well as an upper limit for the poverty line, and it
may turn out that the distribution functions do not cross between the limits, so that
(3.27) holds for z~ < x < z*, say, so that the headcount ratio is robust to the choice
of poverty line within the range of possibilities. Since the distribution functions
may still cross below z ~, we no longer have the implication that (3.28) holds even
over the restricted range.
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It is also worth considering again what happens when the poverty line can be
anything, from zero to infinity. This is the case where the robustness of the head-
count ratio is equivalent to the distribution functions never crossing, which is
(unrestricted) first-order stochastic dominance. If the poverty deficit curves never
cross, we have second-order stochastic dominance; by definition, F, second-order
stochastically dominates F, if the expectation of all monotone increasing concave
functions is larger under F| than under F,. If the social welfare function is addi-
tive over individual welfare levels, concavity is equivalent to diminishing marginal
social utility, and thus to a preference for transfers from richer to the poorer peo-
ple. Hence, noncrossing of the poverty deficit curves means that an additive
equity-respecting social welfare function would prefer the distribution with the
lower curve. Not surprisingly, the poverty deficit curve of one distribution is
everywhere above that of another if and only if the generalized Lorenz curve of the
former is everywhere below that of the former; generalized Lorenz curves and
social welfare functions will rank distributions in the same way as one another and
in the same way as poverty deficit curves when nothing is known about the pov-
erty line.

If the poverty deficit curves cross or, equivalently, if the generalized Lorenz
curves cross, we might want to consider one more order of integration or of domi-
nance. If we draw the curves formed by integrating under the poverty deficit
curves, and if these do not cross, then one distribution dominates the other at the
third order. This means that it would be preferred by any additive social welfare
function where social marginal utility is positive, diminishing, and diminishing at
a decreasing rate. This last condition, sometimes referred to as the principle of
diminishing transfers (see Kolm 1976), means that, not only does the social wel-
fare function increase when transfers are made from rich to poor, but that a transfer
from someone earning 300 rand to someone earning 200 rand is to be preferred to
a transfer from someone with 500 rand to someone with 300 rand. These third-
order connections were first recognized by Atkinson, who reviews them in more
detail in Atkinson (1992).

Finally, it is worth emphasizing again the potential role of measurement error
in household expenditures. The addition of random noise to a distribution spreads
it out, and the contaminated distribution will be second-order stochastically domi-
nated by the true distribution. If the contamination is similar across years, inter-
temporal comparisons may be unaffected, but there is no reason to suppose that
this is the case. Surveys often have start-up problems in their first year, and accu-
racy can be expected to improve over time in a well-run survey, or to deteriorate
if enumerators are not carefully supervised.

3.2 Nonparametric methods for estimating density functions

All of the techniques discussed in the previous section relate to the distribution
functions of welfare, to transformations like Lorenz curves or generalized Lorenz
curves or to the integrals of areas beneath them. However, for many purposes, we
are also interested in the density functions of income, consumption, or welfare.
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Standard measures of central tendency and dispersion are often most easily visual-
ized in terms of densities, and so it is useful to have techniques that provide esti-
mates of densities. These techniques are the topic of this section which takes the
form of a largely methodological digression between two more substantive discus-
sions. It presents an introduction to the tools of nonparametric density estimation
to be used in the next section, as well as in several subsequent chapters. These
tools also help understand the nonparametric regressions that will be used in the
next section. The distribution of welfare is only one of many examples where it is
useful to calculate and display a density function. In the next section, where I con-
sider the effects of pricing policies, I shall show how the joint density of the con-
sumption or production of a commodity and levels of living can be used to des-
cribe the differential effects of price changes on the well-being of rich and poor.

Estimating univariate densities: histograms

A good place to start is with the distributions of PCE by race in South Africa that
were discussed in the previous section. For each of the four groups, Figure 3.10
shows the standard histograms that are used to approximate densities. The histo-
grams are drawn for the logarithm of real PCE at the individual level, not for the
level; the distribution of the latter is so positively skewed as to preclude the draw-
ing of informative histograms. The logarithmic transformation yields a distribution
that is more symmetric and much closer to normal. Indeed, the curves drawn on
each histogram show the normal densities with mean and variance equal to the

Figure 3.10. Histograms of log(PCE) by race, South Africa, 1993
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means and variances of the underlying distributions of the logarithm of PCE; these
appear to provide a reasonably good approximation to the empirical densities, at
least as represented by the histograms.

The histograms and normal distributions of Figure 3.10 are all that we need for
many purposes. They provide a visual impression of the position and spread of the
data, and allow comparison with some convenient theoretical distribution, in this
case the (log)normal. However, there are also a number of disadvantages of histo-
grams. There is a degree of arbitrariness that comes from the choice of the number
of “bins” and of their widths. Depending on the distribution of points, the choice
of a bin boundary on one side or another of a cluster of points can change the
shape of the histogram, so that the empirical distribution appears to be different.
Perhaps more fundamental are the problems that arise from using histograms—
which are tools for representing discrete distributions—to represent the continu-
ously differentiable densities of variables that are inherently continuous. Such
representations can obscure the genuine shape of the empirical distribution, and
are inherently unsuited to providing information about the derivatives of density
functions, quantities that are sometimes of interest in their own right, as we shall
see in Chapters 4 and 5.

It is worth asking why these difficulties did not arise when graphing CDFs, or
the areas beneath them as in Figures 3.7, 3.8, and 3.9 above. The answer is that
they did, but because the data are cumulated and there are a large number of data
points, the discontinuities are less apparent. The empirical distribution functions in
Figures 3.7 and 3.8 are calculated from the formula

(3.29) Fx) = n'lzn:l(x,.sx)
i=1

which is simply the fraction of the sample whose x’s are less than or equal to the
value x. F(x) is a step function that jumps whenever x is equal to a data point, and
that is flat between data points. Because there are many data points, the steps are
all very small relative to the scale of the figure, and there are many steps, so that
the eye does not perceive the jagged shape of the graph, at least away from the
upper tail of the distribution where the points thin out. These considerations apply
even more strongly to poverty deficit curves, which are the integrals of distribution
functions; they are no longer discontinuous at the data points, but only have slopes
that are discontinuous step functions. But changes in slopes are even harder to see,
and the pictures give the impression of smooth and ever accelerating slopes. When
we move from a CDF to a density, we are moving in the opposite direction, differ-
entiating rather than integrating, so that the discontinuities in the empirical distri-
bution function present serious difficulties in estimating densities, difficulties that
are magnified even further if we try to estimate the derivatives of densities.

*Estimating univariate densities: kernel estimators

The problems with histograms have prompted statisticians to consider alternative
ways of estimating density functions, and techniques for doing so are the main
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topic of this subsection. One familiar method is to fit a parametric density to the
data; the two-parameter lognormal is the simplest, but there are many other possi-
bilities with more parameters to permit a better fit (see, for example, Cramer 1969
or Kakwani 1980.) Here I look at nonparametric techniques which, like the histo-
gram, allow a more direct inspection of the data, but which do not share the histo-
gram’s deficiencies. Readers interested in following the topic further are encour-
aged to consult the splendid (and splendidly accessible) book by Silverman (1986),
on whose treatment the following account is based.

Perhaps the simplest way to get away from the “bins” of the histogram is to try
to estimate the density at every point along the x-axis. With a finite sample, there
will only be empirical mass at a finite number of points, but we can get round this
problem by using mass at nearby points as well as at the point itself. The essential
idea is to estimate the density f(x) from the fraction of the sample that is “near” to
x. One way of doing this is to choose some interval or “band,” and to count the
number of points in the band around each x. Think of this as sliding the band (or
window) along the x-axis, calculating the fraction of the sample per unit interval
within it, and plotting the result as an estimate of the density at the mid-point of
the band. If the “bandwidth” is h, say, the so-called naive estimator is

N U O B Y |
(3.30) f(x) = r l( > S X=X < 2).

nh i-1
At each point x, we pass through the sample, giving a score of 1 to each point
within h/2 of x, and zero otherwise; the density is estimated as the total score as
a fraction of the sample size and divided by A to put it on a per unit basis.

The choice of the bandwidth A is something to which I shall return. For the
moment, the point to note is that the bandwidth ought to be smaller the larger is the
sample size. If we only have a few points, we need large bands in order to get any
points in each, even if the wide bandwidth means that we risk biasing the estimate
by bringing into the count data that come from a different part of the distribution.
However, as the sample size grows, we can shrink the bandwidth so that, in the
limit when we have an infinite amount of data, the bandwidth will be zero, and we
will know the true density at each point. In fact, we have to do a little more than
this. What has to happen in order to get a consistent estimate of the density at each
point is that the bandwidth become smaller at a rate that is less fast than the rate at
which the sample size is increasing. As a result, not only does the shrinking band-
width guarantee that bias will eventually be eliminated by concentrating only on
the mass at the point of interest, but it also ensures that variance will go to zero as
the number of points within each band increases and the average within the band
becomes more precise. In this way, the increase in the sample size is shared be-
tween more points per band, to increase the precision, and smaller bandwidths so
as to ultimately eliminate bias. Of course, because some of the benefits of larger
sample sizes have to be “diverted” from putting more observations into each band
and devoted to shrinking the bandwidth, the rate of convergence to the density at
each x is bound to be slower than the normal root-N convergence that is standard
in sampling or regression analysis.
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While the naive estimator captures the essential idea of nonparametric density
estimation using the “kernel” method—the kernel is the band or indicator function
in (3.30)—it does not solve one of the problems with which we began. In parti-
cular, there will be steps in f(x) every time a data point enters or exits the band.
But this can be dealt with by a simple modification. Instead of giving all the points
inside the band equal weight, we give more weight to those near to x and less to
those far away, so that points have a weight of zero both just outside and just
inside the band. We can do this quite generally by replacing the indicator function
in (3.30) by a “kernel” function K(.), so that

- 1 2 X=X
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which is the “kernel estimate” of the density f(x).

There are many possible choices for the kernel function. Because it is a weight-
ing function, it should be positive and integrate to unity over the band, it should be
symmetric around zero, so that points below x get the same weight as those an
equal distance above, and it should be decreasing in the absolute value of its argu-
ment. The “rectangular” kernel in (3.30)—so called because all observations in the
band get equal weight—satisfies all these criteria except the last. A better choice
is a kernel function that uses quadratic weights. This is the Epanechnikov kernel
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whose weights have an inverted U-shape that decline to zero at the band’s edges.
Another obvious source of kernels is the class of symmetric density functions, the
most popular of which is the Gaussian kernel

(3.32) K(2)
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The Gaussian kernel does not use a discrete band, within which observations have
weight and outside of which they do not, but instead gives all observations some
weight at each point in the estimated density. Of course, the normal density is very
small beyond a few standard deviations from the mean, so that the Gaussian kernel
will assign very little weight in the estimate of the density at x to observations that
are further than (say) 3A from x. A third useful kernel is the quartic or “biweight”
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The quartic kernel behaves similarly to the Epanechnikov kernel, declining to zero
at the band’s edges, but has the additional property that its derivative is continuous
at the edge of the band, a property that is useful in a number of circumstances that
we shall see as we proceed.

Although the choice of kernel function will influence the shape of the estimated
density, especially when there are few points and the bandwidth is large, the litera-
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ture suggests that this choice is not a critical one, at least among sensible alterna-
tives such as those listed in the previous paragraph. As a result, a kernel can be
chosen on other grounds, such as computational convenience or the requirement
that it be continuously differentiable at the boundary.

More important is the choice of the bandwidth, and this is a practical problem
that has to be faced in every application. As we have already seen, the bandwidth
controls the trade-off between bias and variance; a large bandwidth will provide a
smooth and not very variable estimate but risks bias by bringing in observations
from other parts of the density, while a small bandwidth, although helping us pick
up genuine features of the underlying density, risks producing an unnecessarily
variable plot. Estimating densities by kernel methods is an exercise in “smoothing”
the raw observations into an estimated density, and the bandwidth controls how
much smoothing is done. Oversmoothed estimates are biased, and undersmoothed
estimates too variable.

A formal theory of the trade-off between bias and variance provides helpful
insights and is a useful guide to bandwidth selection. In standard parametric infer-
ence, optimal estimation is frequently based on minimizing mean-squared error
between the estimated and true parameters. In the nonparametric case, we are at-
tempting to estimate, not a parameter, but a function, and there will be a mean-
squared error at each point on the estimated density. One natural procedure is to
attempt to minimize the mean integrated squared error, defined as the expectation
of the integral of the squared error over the whole density. Silverman (1986, pp.
38—40) shows how to approximate the mean integrated square error for a kernel
estimate of a density, and shows that the (approximate) optimal bandwidth is
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Since the evaluation of (3.35) requires knowledge of the very density that we are
trying to estimate, it is not directly useful, but is nevertheless informative. It con-
firms that the bandwidth should shrink as the sample size increases, but that it
should do so only very slowly, in (inverse) proportion to the fifth root of N. Note
too the importance of the absolute size of the second derivative of the density. If
there is a large amount of curvature, then estimates based on averaging in a band
will be biased, so that the bandwidth ought to be small, and conversely on seg-
ments of the density that are approximately linear.

For most of the applications considered in this book, an adequate procedure is
to consider a number of different bandwidths, to plot the associated density esti-
mates, and to judge by eye whether the plots are undersmoothed or oversmoothed.
This can perhaps be regarded as an informal version of an iterative procedure that
computes a “pilot” estimate, calculates the optimal bandwidth from (3.35) assum-
ing that the pilot is the truth, and then repeats. Applying the informal procedure
usually leads to an easy separation of features in the density that are driven by ran-
dom sampling from those that appear to be genuine characteristi