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Overview

The goal of this book is to consolidate and extend recent results on the role of search frictions

and wage rigidities in explaining the cyclical dynamics of labor markets. Since 2002, the year

that the working paper versions of Shimer (2005), Hall (2005), and Costain and Reiter (2008)

first circulated, there has been a profusion of research in this area, but the underlying question

is as old as macroeconomics: “why do employment and unemployment fluctuate so much at

business cycle frequencies?”

Lucas and Rapping’s theory of intertemporal substitution in labor supply is the starting

point for any modern analysis of employment fluctuations, including the Real Business Cycle

model and the New Keynesian model. The key assumption is that workers decide how much

to work at each point in time, taking as given the prevailing wage. To the extent that labor

supply is elastic, hours of work fluctuate with movements in the wage.

While models based on intertemporal substitution in labor supply are qualitatively con-

sistent with the movement of hours of work over the business cycle, they run into at least two

problems. First, a number of authors have argued that a labor-market clearing model cannot

explain the magnitude of the observed fluctuations in hours worked. In a frictionless environ-

ment, the marginal rate of substitution between consumption and leisure should be equal to

the marginal product of labor, after adjusting for labor and consumption taxes. When they

looked at data, Parkin (1988), Rotemberg and Woodford (1991) and (1999), Hall (1997),

Mulligan (2002), and Chari, Kehoe, and McGrattan (2007) found that this relationship does

not hold.

In Chapter 1, I reaffirm this finding, verifying that there is a wedge between the marginal

rate of substitution and the marginal product of labor, the labor wedge, and that wedge

varies cyclically. During almost every recession, the labor wedge increases sharply. From the

perspective of a frictionless model, there are two ways to interpret this finding: recessions may

be times when labor income taxes and consumption taxes rise, discouraging workers from

supplying labor; or they may be times when the disutility of work increases. In a reduced-

form model, both would dissuade workers from working, causing countercyclical increases in

the measured labor wedge. But unfortunately neither possibility is empirically tenable.
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The second problem with the frictionless model is that, in an environment where workers

can decide how much to work at each point in time, it is possible to generate movements

in hours worked but impossible to generate unemployment, i.e. non-employed workers who

would like to work at the prevailing wage. This omission potentially has important impli-

cations for welfare, since a worker who cannot find a job at the prevailing wage but would

like to have one is, by revealed preference, worse off than if she simply chose not to work

at that wage. It potentially also has important consequences for the positive analysis of

business cycles, since most cyclical movements in the aggregate amount of hours worked are

accounted for by movements between employment and unemployment, not by movements in

hours worked by employed workers.

Equilibrium search and matching models provide an ideal laboratory for understanding

unemployment and have been used extensively for this purpose. The models build on the idea

that it takes workers time to find a job. Thus a worker entering the labor market or a worker

who loses her job necessarily experiences a spell of unemployment. Moreover, unemployed

workers are worse off than employed workers because they are unable to work until they find

a job. In this sense, search and matching provides a theory of unemployment, not just of

non-employment.

Search and matching models also often assume that firms must expend resources in order

to find a suitable worker. A matching function determines the number of workers and firms

that meet as a function of the unemployment rate and firms’ recruiting effort. Fluctuations

in the profitability of hiring a worker, possibly due to fluctuations in aggregate productivity,

induce fluctuations in recruiting. When firms recruit harder, unemployed workers find jobs

faster, pulling down the unemployment rate. Thus search and matching models naturally

generate movements in unemployment duration, an important component of the observed

fluctuations in unemployment at business cycle frequencies.

But the question remains whether search and matching models are quantitatively consis-

tent with the observed behavior of labor market outcomes. There is a good reason to expect

that they are not. Recall that a competitive labor market model cannot explain all of the

observed fluctuations in the labor wedge. Viewed through the lens of a frictionless model,

recessions look like periods when the labor wedge rises, reducing labor supply.

Now consider introducing a labor adjustment cost into a competitive model, making it

costly for firms to increase their employment level. This will directly lower the volatility

of employment. Firms will increase employment by less during expansions because hiring is

costly. They will also be less willing to reduce employment during recessions in order to avoid

future hiring costs, when desired employment returns to normal. Thus hours worked will tend

to be more stable over the business cycle when adjustment costs are larger. If real-world data
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were generated by an economy with labor adjustment costs but an economist ignored the

existence of those costs, he would be surprised at how stable observed hours worked are over

the business cycle. Measuring the labor wedge with data generated by the economy, he would

conclude that the wedge rises during expansions and falls during recessions. This is exactly

the opposite of what we observe in the data.

But search frictions act, at least in part, like a labor adjustment cost, since they imply

that it takes unemployed workers time to find a job and it takes firms time to hire workers. If

this reduces the volatility of employment, the labor wedge will tend to be positively correlated

with employment. Such a model of search frictions will not be useful in explaining the cyclical

behavior of labor markets.

The bulk of this book confirms the thrust of this argument. Search frictions per se do

not help to explain fluctuations in the labor wedge, but rather they exacerbate the problems

of the frictionless model. However, I also find that subsidiary assumptions, especially alter-

native assumptions on wage setting, may help to explain why the measured labor wedge is

countercyclical and why employment is so volatile.

To understand this last statement, note that in matching models based on Pissarides

(1985) and Mortensen and Pissarides (1994), search frictions create a bilateral monopoly

situation between workers and firms. Workers and firms engage in time consuming search

for partners before negotiating a wage. Once they have sunk this cost, there is a range of

wages at which both prefer to match rather than breakup. Loosely speaking, each will agree

to any wage larger than the marginal rate of substitution between consumption and leisure

but smaller than the marginal product of labor, if the alternative is breaking up.

A critical question is how wages are determined. A common assumption in the search and

matching literature is that the worker and firm bargain over the gains from trade, splitting

the surplus according to the Nash bargaining solution (Nash, 1953). In Chapter 2, I prove

that under this wage-setting assumption, the wage, the marginal rate of substitution, and

the marginal product of labor are all proportional to current productivity under particular

assumptions on preferences (balanced growth and additive separability between consumption

and leisure) and under the assumption that output is produced using only labor. Productivity

shocks affect neither the labor wedge nor the (un)employment rate. This neutrality result

is inspired by Blanchard and Gaĺı (2006), who reach a similar conclusion in a model where

firms face a labor adjustment cost.

In Chapter 3, I break this neutrality result in several ways. First, I allow for more

general preferences with substitutability between consumption and leisure. The resulting

fluctuations are minuscule. Second, I introduce capital into the model. While the resulting

framework generates cyclical movement in employment and the labor wedge, it is inconsistent
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with the data. In particular, I verify that employment is positively correlated with the

measured labor wedge in the model, for the reason described above: search frictions dampen

fluctuations in employment, which viewed through the lens of the frictionless model suggests

that expansions are periods when labor tax rates are higher. Third, I consider other shocks,

for example reallocation shocks that change the probability of an employed worker becoming

unemployed. This has little effect on the results. I conclude that the (counterfactual) positive

comovement of the labor wedge and employment is a robust feature of search models when

wages are set via Nash bargaining.

Chapter 4 considers an alternative wage setting procedure that is no less plausible than

the Nash bargaining solution and has vastly different implications for the behavior of the

model. I assume wages are backward-looking. I find that this form of wage rigidity can

potentially explain why employment is so volatile even if the elasticity of labor supply is

relatively small. If wages do not fall following a negative productivity shock, firms will be

reluctant to hire workers, pushing up unemployment duration and the unemployment rate.

This type of wage rigidity is based on ideas developed by Hall (2005).1 In a framework

similar to Shimer (2005), Hall shows that if wages are rigid, unemployment is extremely

sensitive to underlying shocks. He stresses that this type of wage rigidity is not susceptible

to the Barro (1977) critique. That is, no matched worker and firm would mutually prefer to

renegotiate their wage. Similarly, Blanchard and Gaĺı (2006) consider a real wage rigidity

that makes the wage move less than one-for-one with the shock. Firms respond to relatively

low wages during booms by creating many new jobs, driving down the unemployment rate.

However, this also implies that part of the productivity increase is spent on additional job

creation. Consumption then increases by less than productivity, generating a countercyclical

labor wedge. Gertler and Trigari (forthcoming) reach a similar conclusion in a model with

overlapping wage contracts that are not contingent on the path of productivity shocks.

Chapter 5 briefly concludes by summarizing some recent related research and suggesting

the directions that future research on this topic may take.

I intend for this book to provide a stand-alone treatment of search and matching models.

It should be suitable for advanced graduate students and other researchers familiar with

modern recursive methods, for example at the level of Ljungqvist and Sargent (2004). At the

same time, the book is far from exhaustive. I develop one particular model of search frictions,

integrating the search model with a standard real business cycle model. I focus exclusively

on business cycle issues, neglecting fascinating topics such as European unemployment that

many others have addressed using search models. I abstract from important (but difficult

1One may also think of this as a modern attempt to integrate search theory with disequilibrium macroe-
conomics (Barro and Grossman, 1971; Malinvaud, 1977; Benassy, 1982).
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and controversial) issues like the role of incomplete markets in search models with aggregate

fluctuations (Bils, Yongsung, and Kim, 2007; Krusell, Mukoyama, and Şahin, 2007; Nakajima,

2008). Perhaps most importantly, I do not attempt to review the burgeoning literature on

the business cycle properties of search models, mentioning only a few papers from which I

knowingly borrow ideas.2 My excuse is that the scope of this project, originally conceived

to accompany three lectures at the Centre de Recerca en Economia Internacional (CREI),

prevents me from doing so.

2A non-exhaustive reading list would certainly include Yashiv (2006), Krause and Lubik (2007), Mortensen
and Nagypál (2007), Rudanko (forthcoming), Farmer and Hollenhorst (2006), Kennan (2006), Rotemberg
(2006), Rudanko (2008), and the papers collected in a special issue of the Scandinavian Journal of Economics

entitled “Macroeconomic Fluctuations and the Labor Market” (2007, volume 107, issue 4).
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Chapter 1

The Labor Wedge

Throughout this book, I study the interaction of optimizing households and firms in a closed

economy. I begin in this chapter by developing a competitive, representative agent version

of the model. The chapter has two objectives. First, I introduce much of the notation that

I rely on throughout the book. Because of this, I include details in this chapter that are not

really necessary for the second, more substantive objective: I use the model to measure and

analyze the behavior of the labor wedge, the wedge between the marginal rate of substitution

between consumption and leisure and the marginal product of labor. I confirm the well-

known result that the labor wedge tends to rise during recessions, so the economy behaves

as if there is a countercyclical tax on labor. The remainder of the book explores whether

extending the model to incorporate labor market search frictions can explain the behavior of

the labor wedge.

I start the chapter by laying out the essential features of the model: optimizing households,

optimizing firms, a government that sets taxes and spending, and equilibrium conditions that

link the various agents. In Section 1.2, I use pieces of the model to derive a static equation

that relates hours worked, the consumption-output ratio, and the labor wedge. Section 1.3

discusses how I measure the first two concepts and uses these measures to calculate the

implied behavior of the labor wedge in the United States. I establish the main substantive

result, that the labor wedge rose strongly during every recession since 1970. I establish the

robustness of my results to alternative specifications of preferences in Section 1.4 and discuss

the possibility that the results are driven by preference shocks in Section 1.5. I finish the

chapter with a brief discussion in Section 1.6 on the empirical relationship between the hours

fluctuations that I analyze here and fluctuations in employment and unemployment, which

is the main topic of subsequent chapters.

7
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1.1 Representative Agent Model

I denote time by t = 0, 1, 2, . . . and the state of the economy at time t by st. Let st =

{s0, s1, . . . , st} denote the history of the economy and Π(st) denote the time-0 belief about

the probability of observing an arbitrary history st through time t. Exogenous variables like

aggregate productivity, government spending, and distortionary tax rates may depend on

the history st. At date 0, there is an initial capital stock k0 ≡ k(s0) and an initial stock of

government debt b0 = b(s0). The capital stock is owned by firms, while households hold the

debt.

Household

A representative household is infinitely-lived and has preferences over history-st consumption

c(st) and history-st hours of work h(st). To start, I assume that preferences are ordered by

the utility function
∞
∑

t=0

∑

st

βtΠ(st)

(

log c(st) − γε

1 + ε
h(st)

1+ε
ε

)

, (1.1)

where β ∈ (0, 1) is the discount factor, γ > 0 measures the disutility of working, and, as

I show below, ε > 0 is the Frisch (constant marginal utility of wealth) elasticity of labor

supply.

This formulation imposes that preferences are additively separable over time and across

states of the world. It also imposes that preferences are consistent with balanced growth—

doubling a household’s initial assets and its income in every state of the world doubles

its consumption but does not affect its labor supply. This is consistent with the absence

of a secular trend in hours worked per household, at least in the United States (Aguiar

and Hurst, 2007; Ramey and Francis, forthcoming). I maintain both of these assumptions

throughout this book. The formulation also imposes that the marginal utility of consumption

is independent of the worker’s leisure. This restriction is more questionable and so I relax it

in Section 1.4 below.

The household choose a sequence for consumption and hours of work to maximize utility

subject to a single lifetime budget constraint,

a0 =
∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ(st))w(st)h(st) − T (st)
)

. (1.2)

The household has initial assets a0 = a(s0). In addition, τ(st) is the labor income tax rate,

w(st) is the hourly wage rate, and T (st) is a lump-sum transfer in history st, all denominated
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in contemporaneous units of consumption.1 Thus c−(1−τ)wh−T represents consumption in

excess of after-tax labor income and transfers, which is discounted back to time 0 according to

the price q0(s
t). This then represents the cost at time 0 of purchasing one unit of consumption

in history st, denominated in units of history-s0 consumption. Put differently, q0(s
t) is the

history-s0 price of an Arrow-Debreu security that pays one unit of consumption in history st

and nothing otherwise.

Also define the assets of the household following history st as

a(st) =

∞
∑

t′=t

∑

st′ |st

qt(s
t′)
(

c(st′) − (1 − τ(st′))w(st′)h(st′) − T (st′)
)

,

where the notation st′ |st indicates that the summation is taken over histories st′ that are con-

tinuation histories of st, i.e. st′ ≡ {st, st+1, st+2, . . . , st′} for some states {st+1, st+2, . . . , st′}.
Then qt(s

t′) is the price of a unit of consumption in history st′ = {st, st+1, st+2, . . . , st′} paid

in units of history-st consumption. No arbitrage requires that q0(s
t)qt(s

t+1) = q0(s
t+1) for all

st and st+1 ≡ {st, st+1}. Equivalently, the lifetime budget constraint implies a sequence of

intertemporal budget constraints,

a(st) + (1 − τ(st))w(st)h(st) + T (st) = c(st) +
∑

st+1|st

qt(s
t+1)a(st+1), (1.3)

so assets plus labor income plus transfers in history st is equal to consumption plus purchases

of assets in continuation histories st+1.

Firm

The representative firm owns the capital stock k0 = k(s0) and has access to a Cobb-Douglas

production function, producing gross output z(st)k(st)αhd(st)1−α in history st, where z(st) is

history-contingent total factor productivity,2 hd(st) is the labor it demands, and α ∈ [0, 1) is

the capital share of income. A fraction δ of the capital depreciates in production each period,

while at the end of period t, the firm purchases any capital that it plans to employ in period

t+1. That is, history-st+1 ≡ {st, st+1} capital k(st+1) is purchased in history st and so must

1One can easily extend the model to include a consumption tax. Then τ(st) measures the total tax wedge,
the cost to an employer of providing its worker with one unit of the consumption good.

2Although I do not place explicit restrictions on the productivity process, I do assume that worker’s
expected utility is finite so her optimization problem is well-behaved. This is ensured if productivity is
bounded but is true under substantially weaker conditions, if productivity does not grow too fast.
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be measurable with respect to st. The present value of the firm’s profits is then given by

J(s0, k0) =

∞
∑

t=0

∑

st

q0(s
t)
(

z(st)k(st)αhd(st)1−α +(1− δ)k(st)− k(st+1)−w(st)hd(st)
)

. (1.4)

Note that this expression presumes that the firm does not pay any taxes. I do this for

notational simplicity alone. In particular, any payroll taxes are rolled into the labor income

tax rate τ . The firm chooses the sequences hd(st) and k(st+1) to maximize J .

I can also write the value of the firm’s profits from history st on as

J(st, k(st)) =
∞
∑

t′=t

∑

st′

qt(s
t′)
(

z(st′)k(st′)αhd(st′)1−α + (1− δ)k(st′)− k(st′+1)−w(st′)hd(st′)
)

.

This implies the recursive equation

J(st, k(st)) = z(st)k(st)αhd(st)1−α + (1 − δ)k(st) − k(st+1) − w(st)hd(st)

+
∑

st+1|st

qt(s
t+1)J(st+1, k(st+1)). (1.5)

The value of a firm that starts history st with capital k(st) comes from current production

z(st)k(st)αhd(st)1−α, minus the cost of investment k(st+1) − (1 − δ)k(st), minus labor costs

w(st)hd(st), plus the value of starting the following period in history st+1 ≡ {st, st+1} with

k({st+1}) units of capital.

Government

A government sets the path of taxes, transfers, and government debt to fund some spending

g(st). I assume government spending is wasteful or at least is separable from consumption

and leisure in preferences. The government faces a budget constraint in any history st,

b(st) =

∞
∑

t′=t

∑

st′ |st

qt(s
t′)
(

τ(st′)w(st′)h(st′) − g(st′) − T (st′)
)

, (1.6)

so debt b(st) is equal to the present value of future tax receipts in excess of spending and

lump-sum transfers. Again, this is equivalent to a sequence of budget constraints of the form

b(st) + g(st) + T (st) = τ(st)w(st)h(st) +
∑

st+1|st

qt(s
t+1)b(st+1), (1.7)
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so initial debt plus current spending and transfers is equal to current tax revenue plus new

debt issues.

Equilibrium

An equilibrium consists of paths for consumption c(st), labor supply h(st), labor demand

hd(st), capital k(st), assets a(st), debt b(st), taxes τ(st), transfers T (st), government spending

g(st), intertemporal prices q0(s
t) and the wage rate w(st) such that: {c(st)}, {h(st)}, and

{a(st)} solve households’ utility maximization problem, maximizing equation (1.1) subject to

the budget constraint (equation 1.2) given {q(st)}, {w(st)}, {τ(st)}, and {T (st)}; {hd(st)}
and {k(st)} solve firms’ profit maximization problem in equation (1.4) given {q0(st)} and

{w(st)}; the government budget is balanced, so equation (1.6) holds; the labor market clears

in all histories, h(st) = hd(st); the capital market clears in all histories, a(st) = J(st, k(st))+

b(st); and the goods market clears,

z(st)k(st)αhd(st)1−α + (1 − δ)k(st) = c(st) + g(st) + k(st+1),

i.e. output plus undepreciated capital is equal to consumption plus government spending

plus next period’s capital stock. One can confirm that goods market clearing is implied by

the household budget constraint (equation 1.3), the firm’s value function (equation 1.5), the

government budget constraint (equation 1.7), and capital and labor market clearing.

1.2 Deriving the Labor Wedge

To see the implications of this model for the labor wedge, I focus on a subset of the equilibrium

conditions. First, consider the household’s choice of history-st consumption and labor supply.

The first order conditions are

βtΠ(st)
1

c(st)
= λq0(s

t) and (1.8)

βtΠ(st)γh(st)
1

ε = λq0(s
t)(1 − τ(st))w(st) (1.9)

where λ is the Lagrange multiplier on the budget constraint, equation (1.2). Note from the

second equation that a one percent increase in the after-tax wage (1−τ)w raises labor supply

h by ε percent, holding fixed the Lagrange multiplier λ and the intertemporal price q0(s
t).

Thus ε is the Frisch elasticity of labor supply, a key parameter in this chapter. In any history

with positive probability, Π(st) > 0, eliminate λq0(s
t)/βtΠ(st) between these equations and
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solve for the wage:

w(st) =
γc(st)h(st)

1

ε

1 − τ(st)
. (1.10)

This states that the wage is equal to the tax-adjusted marginal rate of substitution between

consumption and leisure (MRS).

Next turn to the firm’s choice of history-st labor demand. From equation (1.4), the first

order condition is

w(st) = (1 − α)
y(st)

hd(st)
, (1.11)

where y(st) = z(st)k(st)αhd(st)1−α is the firm’s gross output. Equation (1.11) states that the

wage is equal to the marginal product of labor (MPL).

Eliminate the state-contingent wage between equations (1.10) and (1.11) and impose labor

market clearing, hd(st) = h(st). Solving for τ(st) gives

τ(st) = 1 − γ

1 − α

(

c(st)/y(st)
)

h(st)
1+ε

ε . (1.12)

This static equation explains how the tax rate τ affects the consumption-output ratio c/y

and hours worked h. It is worth stressing that this relationship holds even though pro-

ductivity, government spending, and distortionary taxes may be time-varying or stochastic.

Expectations of these changes are all captured by the current consumption-output ratio.

For example, if productivity is currently below trend, the consumption-output ratio will

be high and, to the extent that labor supply is elastic, labor supply will be low. An increase

in government spending without a corresponding change in contemporaneous taxes will tend

to reduce the consumption-output ratio and raise hours worked in an offsetting manner.

Prescott (2004) uses a version of equation (1.12) to examine the effect of tax variation

over time and across countries on labor supply. More precisely, he uses a slightly different

functional form for preferences, with period utility function log ct + γ log(100 − ht), where

100 represents the available amount of time per week. He then calibrates γ to match the

average number of hours worked across a broad set of countries, h̄ ≈ 20. With this functional

form, the Frisch elasticity of labor supply is 100/h − 1, or about 4 on average. My choice

of functional forms brings the issue of the elasticity of labor supply to the forefront of the

discussion.

In addition, I focus on a different implication of this equation. Under the hypothesis that

business cycle fluctuations are not primarily due to changes in taxes and transfers, I interpret

cyclical variation in τ(st) as the labor wedge, the wedge between the MRS and MPL. More

precisely, I measure hours and the consumption-output ratio at quarterly frequencies. By

making appropriate assumptions about the disutility of working γ, the capital share α, and
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the Frisch elasticity of labor supply ε, I back out the labor wedge from equation (1.12). This

approach builds upon a substantial body of research, including Parkin (1988), Rotemberg

and Woodford (1991) and (1999), Hall (1997), Mulligan (2002), and Chari, Kehoe, and

McGrattan (2007).

1.3 Measurement

To measure the labor wedge for the U.S. using equation (1.12), I need time series of the

consumption-output ratio and hours worked, as well as values for the parameters ε, γ, and

α. Nominal consumption and output data are available at quarterly frequencies from the

National Income and Product Accounts, Table 1.1.5. Output is Gross Domestic Product,

while consumption is personal consumption expenditures on nondurable goods and services.

I focus on the most comprehensive available series on hours, Prescott, Ueberfeldt, and

Cociuba’s (2008) measure of total hours worked relative to the noninstitutional population

ages 16 to 64, available quarterly since 1959. This series is based primarily on data originally

collected as part of the Current Population Survey (CPS), a monthly survey of households

that is used to construct the unemployment rate. Total hours is equal to the product of

the number of civilians at work and the average hours worked by a person at work,3 plus

the number of military personnel, who are assumed to work for 40 hours per week. The

population is equal to the civilian noninstitutional population ages 16 to 64 plus the number

of military personnel.

I compare the results with those based on a measure of hours paid per adult in the civil-

ian noninstitutional population from the Current Employment Statistics (CES), a monthly

survey of business establishments.4 The main drawback to this survey is that hours data are

unavailable for the government (and military) sector as well as for farm workers, proprietors,

unpaid family workers, and supervisors. In addition, the CES measures hours paid rather

than hours worked, and thus includes vacation time, sick days, and so on. This series is

available since 1964.

I also use an unpublished series for hours worked constructed by the Bureau of Labor

Statistics as part of the Major Sector Productivity and Costs program.5 I again deflate this

3See http://www.bls.gov/cps/, series LNU02005053 and LNU02005054 for the monthly data since June
1976. Prescott, Ueberfeldt, and Cociuba (2008) obtained earlier data from Table A-24 of the BLS publication
Employment and Earnings. The authors have recently extended their dataset back to 1947. The results that
I report here are, if anything, stronger in this longer sample.

4See http://www.bls.gov/ces/, series CES0500000034.
5See http://www.bls.gov/lpc/, series PRS84006033, for the business sector. The series I use augments

this with estimates of hours worked in the government sector. I am grateful to Simona Cociuba for providing
me with this data and clarifying the relationship between the different series for hours.

http://www.bls.gov/cps/
http://www.bls.gov/ces/
http://www.bls.gov/lpc/
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Figure 1.1: The U.S. labor wedge from equation (1.12) using the CPS measure of hours. The
solid blue line shows ε = 4, the dashed red line shows ε = 1, and the dotted green line shows
ε = 1

2
. In each case, I fix the remaining parameters to ensure that the average labor wedge

is 0.40. The gray bands show NBER recession dates.

series by the adult noninstitutional population. Although this measure relies primarily on

data from the CES, it also uses data from the CPS to estimate the hours worked by workers

who are not covered by the establishment survey. It also adjusts the CES data to convert

hours paid into hours worked. In principle the coverage of this series should be similar to

Prescott, Ueberfeldt, and Cociuba (2008).

Rather than take a stand on the Frisch labor supply elasticity ε, I consider a range of

possible values and report three of them, ε = 0.5, 1, and 4. The lowest value is towards the

upper range of elasticities for prime age mens’ hours that many microeconomists consider

plausible; see Blundell and MaCurdy (1999). The highest value is in line with the elastici-

ties that macroeconomists frequently use in representative agent business cycle and growth

models. For each value of the elasticity, I set the ratio γ/(1 − α) so that the average labor

wedge is 0.4 from 1959 to 2007, consistent with the tax wedge that Prescott (2004) reports.

The results are similar if the average labor wedge is 0.3 or 0.5.

Figure 1.1 shows the implied behavior of the labor wedge using the CPS measure of

hours.. Two patterns stand out. First, there has been a trend decline in the labor wedge

since around 1980. Arguably this reflects underlying movements in labor and consumption



1.3. MEASUREMENT 15

−20

−10

0

10

20

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

D
ev

ia
ti

on
fr

om
T
re

n
d

Figure 1.2: Deviation of the labor wedge from log trend, HP filter with parameter 1600,
using the CPS measure of hours. The solid blue line shows ε = 4, the dashed red line shows
ε = 1, and the dotted green line shows ε = 1

2
. In each case, I fix the remaining parameters

to ensure that the average labor wedge is 0.40. The gray bands show NBER recession dates.

taxes. Second, the labor wedge is countercyclical. I indicate NBER recession dates with

gray bands. Regardless of the elasticity of labor supply, the labor wedge rose during every

recession except the first, with more pronounced fluctuations when labor supply is less elastic.

This effect does not disappear even when labor supply is infinitely elastic.6

To emphasize this pattern, Figure 1.2 shows the difference between log τ and its trend,

where I measure the trend using a Hodrick-Prescott filter with a standard smoothing param-

eter, 1600 for quarterly data. It is easy to see a sharp increase in the labor wedge during

every recession except in 1960. The magnitude of the implied cycles depends on the elasticity

of labor supply. For example, with ε = 1, the period around the 1990 recession is associated

with a ten percent increase in the labor wedge relative to trend, while with ε = 4, the increase

was almost six percent.7 Higher values of the labor supply elasticity only slightly dampen

the implied fluctuations—even if the Frisch elasticity is infinite, the labor wedge rose by four

6Observe that the elasticity of labor supply enters equation (1.12) as (1 + ε)/ε. This means that an
elasticity of 4 and an infinite elasticity have nearly the same effect on the labor wedge.

7With ε = 1, the labor wedge was five percent below trend in the third quarter of 1990 and rose to five
percent above trend by the second quarter of 1992. With ε = 4, it rose from three percent below trend to
three percent above trend during the same period.
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Figure 1.3: Annual growth rate of the labor wedge using the CPS measure of hours. The
solid blue line shows ε = 4, the dashed red line shows ε = 1, and the dotted green line shows
ε = 1

2
. In each case, I fix the remaining parameters to ensure that the average labor wedge

is 0.40. The gray bands show NBER recession dates.

percent during this time period. Conversely, smaller values of the Frisch elasticity amplify

fluctuations in the labor wedge.

Figure 1.3 displays the same findings slightly differently, depicting the annual growth

rate of the labor wedge. Again, the labor wedge grew during every recession except the first

in 1960. The magnitude of fluctuations in the growth of the labor wedge depends on the

elasticity of labor supply.

Table 1.1 summarizes these results. The first row in the top panel shows the standard

deviation of the detrended labor wedge for four different labor supply elasticities while the

first column shows the standard deviation of the detrended consumption-output ratio and

detrended hours. When the elasticity is small, the labor wedge is four times more volatile

than hours and five times more volatile than the consumption-output ratio, while the rela-

tive volatilities of the labor wedge and hours are similar when the elasticity is large. The

remaining entries show the correlation between the labor wedge (for different elasticities) and

the consumption-output ratio and hours. The correlation with the consumption-output ratio

disappears when the elasticity is high enough, but the labor wedge is strongly negatively

correlated with hours, regardless of the elasticity of labor supply. The bottom panel shows
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labor wedge

detrended ε = 0.5 ε = 1 ε = 4 ε = ∞
s.d. 0.055 0.031 0.018 0.014

c/y 0.010 0.338 0.278 0.049 −0.131
h 0.013 −0.795 −0.835 −0.745 −0.628

annual growth ε = 0.5 ε = 1 ε = 4 ε = ∞
s.d. 0.079 0.045 0.027 0.022

c/y 0.015 0.256 0.163 −0.088 −0.260
h 0.018 −0.803 −0.835 −0.733 −0.617

Table 1.1: Comovement of the labor wedge, hours, consumption-output ratio for four different
values of the labor supply elasticity using the CPS measure of hours. In the top panel, all
series are detrended with an HP filter with parameter 1600. The bottom panel shows annual
growth rates.

the analogous results for the annual growth rate of the labor wedge, the consumption-output

ratio, and hours. They are quantitatively very similar. It looks as if hours growth is negative

when the labor income tax rate is rising, regardless of the elasticity of labor supply.

There are several different ways to understand these results. Viewed through the lens

of a model with a competitive labor market, fluctuations in the labor income tax rate drive

fluctuations in hours. If in reality the tax rate is constant, the model underpredicts fluc-

tuations in hours worked at business-cycle frequencies, given the observed time path of the

consumption-output ratio. This is an old critique of competitive models of the labor market:

such models can only explain part of the cyclical fluctuations in hours worked, particularly

when labor is supplied relatively inelastically.

Table 1.2 shows that the main conclusions hold with the alternative measures of hours.

I assume that the elasticity of labor supply is ε = 1 and examine how alternative measures

of hours affect the behavior of the labor wedge. These other measures raise the volatility

of the labor wedge, and by more so than they raise the volatility of hours. In addition,

the correlation between the two series is, if anything, increased. I find similar results with

other values of the labor supply elasticity and so conclude that this result is robust to the

exact measure of hours. The competitive model cannot explain all of the movement in hours

relative to the consumption-output ratio if the labor income tax rate is constant.

One possible explanation for this pattern is that labor tax rates are in fact countercyclical.

This hypothesis has some supporters. For example, in a recent paper, Mertens and Ravn

(2008) measure tax shocks using the Romer and Romer (2007) narrative analysis of tax
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detrended CPS CES BLS
std. dev. h 0.013 0.018 0.014
std. dev. τ 0.031 0.049 0.035

correl. (h,τ) -0.835 -0.868 -0.883

annual growth CPS CES BLS
std. dev. h 0.018 0.026 0.020
std. dev. τ 0.045 0.069 0.051

correl. (h,τ) -0.835 -0.872 -0.879

Table 1.2: Comovement of the labor wedge and hours with labor supply elasticity ε = 1. In
the top panel, all series are detrended with an HP filter with parameter 1600. The bottom
panel shows annual growth rates. The first column uses the hour series from Prescott,
Ueberfeldt, and Cociuba (2008) from 1959 to 2007, constructed primarily from the CPS. The
second uses hours data from the CES from 1964 to 2007. The third uses unpublished hours
data constructed by the BLS to measure labor productivity from 1959 to the first quarter of
2006.

policy. They conclude that tax shocks account for 18 percent of the variance of output at

business cycle frequencies. Perhaps most provocatively, they find that the 1982 recession was

caused by workers’ anticipation of future tax cuts. Of course, I have shown that expectations

of future tax cuts may affect both the consumption-output ratio and the hours worked, but

not the labor wedge, so such behavior cannot easily explain the patterns in the data. In

any case, most economists seem to be skeptical that tax movements alone can explain the

observed variation in the labor wedge.

1.4 Alternative Specification of Preferences

A second possible explanation for the behavior of the labor wedge is that in this model

either the MRS or MPL is misspecified. The specification of the MPL depends only on

the assumption of a Cobb-Douglas aggregate production function. Macroeconomists are

justifiably reluctant to abandon that assumption because it ensures that the capital and

labor shares of national income as well as the interest rate are constant, consistent with the

Kaldor (1957) growth facts.

The specification of household preferences is also tightly constrained by long-run restric-

tions. Maintain the assumption that preferences are separable across time and states of the

world, but relax the assumption of additive separability between consumption and leisure.

To be consistent with balanced growth—the absence of a long-run trend in hours—and a
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constant Frisch elasticity, preferences over consumption and leisure must be ordered by

∞
∑

t=0

∑

st

βtΠ(st)
c(st)1−σ

(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε

)σ − 1

1 − σ
. (1.13)

As before, γ > 0 parameterizes the disutility of work and ε > 0 is the Frisch labor supply

elasticity. The new parameter σ > 0 determines the substitutability between consumption

and leisure. The limit as σ → 1 nests the separable case in equation (1.1). The case where

σ > 1 is of particular interest, since this implies the marginal utility of consumption is higher

when households work more, consistent with standard models of time allocation (Becker,

1965). In any case, utility is increasing and concave in consumption and decreasing and

concave in hours of work.

With these preferences, the first order conditions for consumption and hours are

βtΠ(st)c(st)−σ
(

1 + (σ − 1)
γε

1 + ε
h(st)

1+ε
ε

)σ
= λq0(s

t),

qβtΠ(st)c(st)1−σ
(

1 + (σ − 1)
γε

1 + ε
h(st)

1+ε
ε

)σ−1

σγh(st)
1

ε = λq0(s
t)(1 − τ(st))w(st).

The Frisch demand system expresses consumption c(st) and hours h(st) as functions of the

Lagrange multiplier λ, the intertemporal price q0(s
t), and the wage rate w(st). Eliminating

c(st) between the first order conditions gives

σγh(st)
1

ε =

(

λq0(s
t)

βtΠ(st)

)
1

σ

(1 − τ(st))w(st),

so the Frisch elasticity of labor supply, the elasticity of hours with respect to the wage holding

fixed the intertemporal price and the Lagrange multiplier, is in fact ε. Moreover, eliminate

λq0(s
t)/βtΠ(st) between the first order conditions to get

w(st) =
σγc(st)h(st)

1

ε

(1 − τ(st))
(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε

)

whenever Π(st) > 0. Eliminate the wage using equation (1.11) and impose market clearing,

h(st) = hd(st). This gives

τ(st) = 1 − γσ(c(st)/y(st))h(st)
1+ε

ε

(1 − α)
(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε

)
. (1.14)

This is a modest generalization of equation (1.12). Once again, one needs only to know
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Figure 1.4: The deviation of the labor wedge from log trend, HP filter with parameter 1600,
using equation (1.14) and the CPS measure of hours. The dashed red line shows σ = 1, the
dotted green line shows σ = 2, and the solid blue line shows σ = 4. In each case I set ε = 1
and α = 1/3 and fix the remaining parameter γ to ensure that the average labor wedge is
0.40. The gray bands show NBER recession dates.

the consumption-output ratio, hours worked, and the value of four parameters in order to

compute the labor wedge.

To understand the quantitative implications of this expression, I use the hours series

from Prescott, Ueberfeldt, and Cociuba (2008). I fix the labor share at the conventional

value of 1 − α = 2/3 and for different values of the substitutability parameter σ and the

elasticity of labor supply ε, choose the disutility of work parameter γ to ensure an average

labor wedge of 0.40. Figure 1.4 shows the time series behavior of the labor wedge with the

Frisch elasticity fixed at 1. The dashed red line corresponds to the limit as σ converges to

1, the additively separable case that I analyzed before, while the remaining two lines show

σ = 2 and σ = 4. Raising the substitutability between consumption and leisure modestly

reduces the magnitude of fluctuations in the labor wedge but does not qualitatively change

the results. I do not show the results with a higher elasticity of labor supply, but they too

are similar.

Additionally, the microeconomic behavior of the model is unreasonable when σ is much

larger than 1. Consider the following thought experiment: two workers normally work and
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consume the same amount. One year, however, one is unable to work, for example because

of an idiosyncratic shock to the disutility of work γ, while the other continues to work the

average number of hours that I observe in the data. With complete markets, the two workers

want to keep their marginal utility of consumption λ equal through this episode. How much

lower is the consumption of the unemployed worker, cu, compared to the consumption of the

employed, ce? The first order condition for consumption implies

ce
cu

= 1 + (σ − 1)
γε

1 + ε
h

1+ε
ε ,

where h is the number of hours worked by the employed worker. With σ = 1, consumption

is equal for the two workers. With ε = 1 and σ = 1.5, consumption falls by 13 log points for

the unemployed. With σ = 2, consumption should fall by 20 log points, and with σ = 4 it

should fall by 31 log points.

Are these numbers reasonable? Aguiar and Hurst (2005) provide some guidance. They

find that food consumption expenditures drop by about 17 percent at retirement, accom-

panied by a 53 percent increase in the time spent on food production. This is consistent

with values of σ in the range of 2. Much stronger substitutability is inconsistent with the

numbers in Aguiar and Hurst (2005) and do not resonate introspectively. In any case, even

with infinite substitutability between consumption and leisure, σ → ∞, the results do not

change appreciably. With the labor supply elasticity fixed at ε = 1, the standard deviation

of the annual growth rate of the labor wedge is more than twice the corresponding number

for hours and the correlation between the two series is −0.76.

1.5 Preference Shocks

A third theoretical possibility is that the representative agent’s disutility of work, γ, is

stochastic. This modifies equation (1.12) to read

τ(st) = 1 − γ(st)

1 − α

(

c(st)/y(st)
)

h(st)
1+ε

ε ,

where γ(st) is the history-contingent disutility of work. Then an economist who ignored

variation in the disutility of work would falsely conclude that there are fluctuations in the

labor wedge, even if labor taxes are constant in the data and the model is otherwise correct.

Many recent quantitative macroeconomic models allow for such a preference shock. An

unobserved demand shock plays an important role in explaining aggregate fluctuations in

Rotemberg and Woodford (1997). They interpret the shock as a combination of a preference
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shock and a shock to government spending.8 Erceg, Henderson, and Levin (2000) and Smets

and Wouters (2003) also have a quantitatively important preference shocks in their models

of monetary policy. More recently, Gaĺı and Rabanal (2004) find that a preference shock

explains 57 percent of the variance of output and 70 percent of the variance of hours in their

estimated dynamic stochastic general equilibrium model.9

A closely related theoretical possibility is that workers have time-varying market power.

This is often formalized by assuming that each household is the monopoly supplier of a

heterogeneous type of labor and sets the wage to maximize its utility. Recessions are periods

when different types of labor are poor substitutes, so households are better able to exploit

their market power, reducing hours to drive up wages. A number of recent papers have

emphasized time-varying wage markups as an important source of business cycle shocks,

including Smets and Wouters (2003) and (2007). In Smets and Wouters (2007), the wage

markup shock accounts for twenty percent of the variance in output and over half the variance

in inflation at a ten-quarter horizon. Gaĺı, Gertler, and López-Salido (2007) also find an

important role for markup fluctuations, but reach a different conclusion. They argue that

some other, unspecified, primitive shock causes countercyclical fluctuations in markups, which

in turn generates a countercyclical labor wedge.

Like many economists, I have a strong prior belief that the changes in the disutility of

labor and changes in wage markups do not drive business cycle fluctuations.10 Although

households may differ in their disutility of work and the disutility may change over time

for some households, one would expect those movements to average out in a large economy.

Still, the empirical success of preference and markup shocks is revealing. They work because,

viewed through the lens of a market-clearing model, recessions look like times when workers

choose to supply less labor, and expansions like times when they choose to supply more labor,

than is predicted by the model.

8Unlike preference shocks, government spending can be measured and is not strongly correlated with the
labor wedge. In any case, the model I have developed here allows for government spending shocks, but these
do not affect the labor wedge equation.

9Gaĺı and Rabanal (2004, p. 271) write that the preference shock can be “interpret[ed] more broadly as a
(real) demand shock.”

10For example, Modigliani (1977, p. 6) writes “Sargent (1976) has attempted to remedy this fatal flaw
by hypothesizing that the persistent and large fluctuations in unemployment reflect merely corresponding
swings in the natural rate itself. In other words, what happened to the United States in the 1930’s was a
severe attack of contagious laziness! I can only say that, despite Sargent’s ingenuity, neither I nor, I expect,
most others at least of the nonmonetarists’ persuasion are quite ready yet to turn over the field of economic
fluctuations to the social psychologist.” Mankiw (1989, p. 82) writes “Alternatively, one could explain the
observed pattern without a procyclical real wage by positing that tastes for consumption relative to leisure
vary over time. Recessions are then periods of ‘chronic laziness.’ As far as I know, no one has seriously
proposed this explanation of the business cycle.”
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Figure 1.5: Deviation of per capita hours and the e-pop ratio from log trend, HP filter with
parameter 1600. The solid blue line shows the deviation of hours from log trend and the
dashed red line shows the deviation of employment. The gray bands show NBER recession
dates.

1.6 From Hours to Unemployment

In the remainder of the book, I explore whether search and matching models, based on

Pissarides (1985) and Mortensen and Pissarides (1994), can help to explain the behavior of

the labor wedge. In doing so, I switch from a focus on the behavior of hours worked to a focus

on the behavior of employment and unemployment. This is because search costs introduce

a nonconvexity into households’ decision problem which emphasizes the binary decision of

whether to work, rather than the continuous decision of how many hours to work each

week. The data indicate that this focus is, for the most part, appropriate. Figure 1.5 shows

that the correlation between detrended employment-population (e-pop) ratio and detrended

hours per adult is 0.97 and detrended hours are only slightly more volatile than detrended

employment, with a relative standard deviation of 1.3.11 In words, most business cycle

frequency fluctuations in hours are accounted for by fluctuations in employment, rather than

fluctuations in the number of hours per employee.

11I compute hours per member of the non-institutional population aged 16 to 64 using the measure of
hours in Prescott, Ueberfeldt, and Cociuba (2008). I use their measure of employment as well, and divide by
the same population measure.
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Figure 1.6: Deviation of the e-pop and u-pop ratios from trend, HP filter with parameter
1600. The dashed red line shows the deviation of the e-pop ratio from trend and the solid
blue line shows the deviation of the u-pop ratio. The gray bands show NBER recession dates.

Like many search models, the book also focuses on the margin between employment and

unemployment, abstracting away from entry and exit from the labor force. Again, this is

empirically reasonable at business cycle frequencies. Figure 1.6 shows that the correlation

between the absolute deviation of the e-pop ratio from trend and the absolute deviation of

the unemployment-population (u-pop) ratio from trend is −0.90, with a relative standard

deviation of 1.4.12 When employment falls below trend, most of the workers show up as

unemployed, rather than dropping out of the labor force.

12I use the standard Bureau of Labor Statistics measure of unemployment, based on the CPS.



Chapter 2

Benchmark Search Model

In this chapter I develop a benchmark search model. A representative firm allocates workers

between two activities, production and recruiting. Recruiters enable the firm to attract more

workers, while producers generate revenue by creating a consumption good. There is no

capital in the model, so production uses only labor. Employed workers are periodically hit

by shocks that leave them unemployed, while unemployed workers find jobs when they contact

a recruiter. Workers’ preferences are additively separable over time and between consumption

and leisure, and consistent with balanced growth. A government levies a labor income tax

and rebates the proceeds lump-sum to households. Finally, wages are set according to the

Nash bargaining solution.

I find that aggregate productivity shocks have no effect on employment or the labor wedge.

To understand why, suppose productivity is temporarily above trend and firms take advantage

of this by shifting workers into production. Since there is no capital, this necessarily raises

consumption. But workers would like to maintain smooth consumption, which puts downward

pressure on interest rates. This makes recruiting, a form of investment that is costly today

but generates revenue in the future, more profitable. With the particular assumption on

preferences, firms in fact find it optimal to maintain a constant division of labor between

recruiting and production. With a constant number of recruiters, employment is constant.

With a constant number of producers, the consumption-output ratio is constant. Thus the

model implies that the labor wedge, as measured in equation (1.12), should be constant as

well. The benchmark search model therefore is unable to explain the data that I discussed

in Chapter 1.

I start in Section 2.1 with a steady state version of the model in order to introduce the

environment and notation. Section 2.2 allows for productivity shocks, Section 2.3 establishes

conditions under which the equilibrium solves an associated planner’s problem, and Sec-

tion 2.4 shows that the neutrality result is robust to a number of generalizations, including

25



26 CHAPTER 2. BENCHMARK SEARCH MODEL

a labor force participation margin and an endogenous choice of hours for employed workers.

Loosely speaking, if a version of the model without search frictions does not generate fluc-

tuations in employment or hours worked, search frictions will not explain why labor market

outcomes fluctuate cyclically. Thus this neutrality result is a natural extension of known

results in competitive business cycle models.

2.1 Steady State

There are three types of economic actors: households composed of many individuals who

consume, search for jobs, and supply labor in order to maximize expected utility subject

to a budget constraint; firms, which allocate workers between production and recruiting in

order to maximize the expected present value of profits; and a government, which taxes labor

earnings and rebates the proceeds to households lump-sum. There are two technologies, one

for matching unemployed workers seeking job openings to recruiters seeking workers and

another for producing the consumption good using labor.

Denote time by t = 0, 1, 2, . . . and assume for now that there are no shocks, so in the

notation of the previous chapter, Π(st) is degenerate.

2.1.1 Firms

A representative firm employs a measure n0 workers at time 0. The firm has access to two

technologies. The first is a constant returns to scale production technology: each worker

who uses the technology produces z units of the consumption good per period. Let ℓt denote

the measure of producers, i.e. workers who use the production technology in period t. The

second is a constant returns to scale recruiting technology: a worker who uses the recruiting

technology in period t attracts an average of µ(θt) unemployed workers to the firm at the

start of period t + 1, where θt is the ratio of the measure of recruiters to the measure of

unemployed workers in the aggregate economy, hereafter the recruiter-unemployment ratio.

Let vt denote the measure of recruiters, i.e. workers who use the recruiting technology in

period t.

vtµ(θt) represents the measure of new employment relationships, or matches, in the econ-

omy in period t. This is essentially a matching function (Pissarides, 1985), but the inputs into

matches are unemployed workers and recruiters, rather than unemployed workers and vacant

jobs. In particular, the matching function exhibits constant returns to scale and should be

increasing in both the measure of unemployed workers and the measure of vacancies. Thus

I assume µ : R
+ → R

+ is continuous and nonincreasing with limθ→0 µ(θ) = ∞. It will be
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useful to define f(θ) ≡ θµ(θ), which I argue below is the probability that an unemployed

worker finds a job. This is nondecreasing and concave, with f(0) = 0 and f(θ) ≤ 1 for all θ,

so in particular limθ→∞ µ(θ) = 0.

The present value of the firm’s profits, discounted back to time-0 and indexed by the

initial firm size n0, is

J(0, n0) =

∞
∑

t=0

qt
0

(

zℓt − wt(ℓt + vt)
)

, (2.1)

where qt
0 is the price of one unit of consumption in date t, denominated in units of date 0

consumption and wt is the wage in units of the contemporaneous consumption good. The

firm can freely switch workers between production and recruiting, but total employment

nt ≡ ℓt + vt is constrained by past recruiting. That is, n0 is given, while in any period t ≥ 0,

nt+1 = vtµ(θt) + (1 − x)nt, (2.2)

where x ∈ (0, 1) is the “employment exit probability,” i.e. the exogenous rate of job sepa-

rations. Note that since limθ→0 µ(θ) = ∞ and µ is continuous, µ(θ) > x for small θ. This

implies that a firm can always grow by putting enough of its workers into recruiting as long

as the recruiter-unemployment ratio is not too large. The firm chooses the sequences {ℓt}
and {vt} in order to maximize the present value of profits in equation (2.1), taking as given

the constraint on firm growth in equation (2.2), the initial level of employment n0, the path

of prices wt and qt
0, and the path of the recruiter-unemployment ratio θt.

2.1.2 Households

There is a representative household consisting of a continuum of expected-utility-maximizing,

infinitely-lived individuals with measure 1. Each household member i ∈ [0, 1] has time-

separable preferences over her consumption cit and her labor supply ni
t. She may be either

employed by a firm (ni
t = 1) or unemployed (ni

t = 0). Her period felicity is log cit if she is

unemployed and log cit − γ if she is employed. She discounts future felicity with factor β < 1.

The household allocates total consumption in period t, ct, in order to maximize the sum

of household utility, and so equalizes the marginal utility of consumption across individu-

als. With additive separability between consumption and leisure, this implies the household

equalizes consumption across individuals, acting as if it has a utility function

∞
∑

t=0

βt
(

log ct − γnt

)

, (2.3)
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where nt is the fraction of household members who are employed in period t. Effectively

the large household is able to insure its members against all idiosyncratic shocks, mimicking

the complete markets allocation. This approach to finding the complete markets allocation

in search models is due originally to Merz (1995); see Andolfatto (1996) for an alternative

approach to modeling complete markets in a search economy.

The household faces two types of constraints. First, there is a single budget constraint,

which states that initial assets must equal the difference between the present value of con-

sumption and the present value of after-tax labor income plus transfers,

a0 =
∞
∑

t=0

qt
0(ct − (1 − τ)wtnt − Tt). (2.4)

The household earns pre-tax income wtnt, pays a proportional labor income tax τ , receives

a lump-sum transfer Tt, and discounts period-t income at the same rate qt
0 as firms.

Second, employment is determined by household members’ flow in and out of jobs. Em-

ployed workers lose their job with probability x each period, while unemployed workers find

a job with probability f(θt) = θtµ(θt), the product of the recruiter-unemployment ratio and

the ratio of matches to recruiters, i.e. the ratio of matches to unemployed workers. Put dif-

ferently, the number of workers finding jobs, f(θt)(1− nt), is equal to the number of workers

recruited by firms, µ(θt)vt(n0), since f(θ) = θµ(θ) and θt = vt(n0)/(1 − nt). The household

takes n0 as given and recognizes that

nt+1 = (1 − x)nt + f(θt)(1 − nt). (2.5)

Let V (0, a0, n0) denote the time-0 value of maximizing utility in equation (2.3) subject to the

budget constraint in equation (2.4) and the law of motion for employment in equation (2.5).

2.1.3 Government

The government runs a balanced budget in each period, rebating tax revenue lump-sum to

households:

Tt = τwtnt. (2.6)

I assume for now that there is no government spending.

2.1.4 Wages

At the start of each period, each employed worker bargains with her employer over her wage.

If bargaining fails, the match breaks up; the worker is unemployed in the current period but
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has a chance to search for a job, while the firm loses the job. If bargaining succeeds, the

worker is paid the pre-tax bargained wage w this period and is deployed by the firm either

producing output or recruiting other workers. Moreover, both the worker and firm anticipate

agreeing on the equilibrium wage wt in any future period t when they are matched. In

equilibrium, the bargained wage equals the equilibrium wage in every period.

Rather than write down a particular model of bargaining, I follow Pissarides (1985) and

posit that the outcome of bargaining satisfies several reasonable properties and look at their

implications. More precisely, I use the axiomatic Nash bargaining solution (Nash, 1953), but

relax the symmetry assumption. Let Ṽn(t, w) denote the marginal utility for a household

with the equilibrium level of assets and employment of having one worker employed at a

wage w in period t rather than unemployed. Also let J̃n(t, w) denote the marginal profit to

a firm with the equilibrium number of employees of employing one worker at w. In both

cases, the subscript ‘n’ refers to partial derivatives, to stress that these are marginal values.

I compute Ṽn and J̃n in Section 2.1.6 below.

Assuming there are gains from trade, that is wages w satisfying both Ṽn(t, w) ≥ 0 and

J̃n(t, w) ≥ 0, the bargained wage maximizes the asymmetric Nash product,

Ṽn(t, w)φJ̃n(t, w)1−φ, (2.7)

where φ ∈ (0, 1) represents workers’ bargaining power. If there are no gains from trade, the

worker becomes unemployed.

2.1.5 Equilibrium

For an arbitrary tax rate τ , an equilibrium consists of paths for consumption ct, employment

nt, producers ℓt, recruiters vt, transfers Tt, intertemporal prices qt
0, the wage rate wt, and the

ratio of recruiters to unemployed workers θt such that: {ℓt} and {vt} solve firms’ profit max-

imization problem, maximizing equation (2.1) subject to the law of motion for employment

in equation (2.2) given {qt
0}, {wt}, and {θt}; {ct} and {nt} solve households’ utility maxi-

mization problem, maximizing equation (2.3) subject to the budget constraint (equation 2.4)

and the law of motion for employment in equation (2.5) given {qt
0}, {wt}, {θt}, and {Tt}; the

government budget is balanced, so equation (2.6) holds; wt maximizes the Nash product in

equation (2.7) for all t; the labor market clears, nt = ℓt + vt for all t; and the goods market

clears, ztℓt = ct for all t.

I look for a steady state equilibrium where consumption, employment, producers, re-

cruiters, transfers, and wages are all constant, while qt
0 = q̄t for some q̄ < 1, so intertemporal

prices decline geometrically. Note that for such a steady state to exist, I require that n0 = n̄,
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where

n̄ =
f(θ̄)

f(θ̄) + x
(2.8)

and θ̄ is the steady state ratio of recruiters to unemployed workers. From equation (2.5), this

implies nt = n̄ for all t. I drop irrelevant time subscripts in what follows.

2.1.6 Characterization

Households

I begin by expressing the household’s problem recursively. A household starts a period with

assets a and employment n. Suppressing the time argument in the value function, its lifetime

utility satisfies

V (a, n) = max
a′

(

log
(

a+(1− τ)w̄n+ T̄ − q̄a′
)

−γn+βV
(

a′, (1−x)n+ f(θ̄)(1−n)
)

)

, (2.9)

where w̄ is the equilibrium wage and T̄ is the equilibrium transfer. The household decides

this period how much to save a′, determining its state at the start of the next period (a′, n′),

where n′ = (1−x)n+f(θ̄)(1−n) solves equation (2.5). Savings determines the consumption

available this period via the intertemporal budget constraint, c = a + (1 − τ)w̄n + T̄ − q̄a′.

Together with a natural borrowing limit, which ensures that a household can always service

the interest on its debt,

a ≥ −(1 − τ)w̄ + T̄

1 − q̄
,

this is equivalent to the original household budget constraint in equation (2.4).

The household’s behavior is standard. Differentiate the value function with respect to

initial assets to get the envelope condition

Va(a, n) =
1

c
,

where the subscript denotes a partial derivative and c = a+ (1− τ)w̄n+ T̄ − q̄a′. Moreover,

the first order condition with respect to next period’s assets implies

q̄

c
= βVa(a

′, n′).

In steady state a = a′ = ā and n = n′ = n̄, and in particular the marginal value of assets is

constant,

Va(a, n) = Va(a
′, n′).
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Eliminating Va between the envelope and first order conditions then pins down the intertem-

poral price, q̄ = β. Then the budget constraint determines consumption, equal to the annuity

value of assets, (1− β)ā, plus the after-tax wage times the employment rate, plus the lump-

sum transfer. For a household that starts at steady state employment, n = n̄,

c̄ = (1 − β)ā+ (1 − τ)w̄n̄+ T̄ . (2.10)

To characterize the wage using the Nash bargaining solution in equation (2.7), I need to

compute the marginal value to the household of having a worker employed at w̄ rather than

unemployed. Differentiating equation (2.9) gives

Vn(a, n) =
(1 − τ)w̄

c̄
− γ + β(1 − x− f(θ̄))Vn(a, n). (2.11)

Now consider the value of a household that has assets ā, has n̄ workers paid w̄ and has a

small measure, say ǫ > 0, workers paid an arbitrary wage w this period. All wages revert to

w̄ next period. Modifying equation (2.9), the value of the household is

V̂ (w, ǫ) = max
a′

(

log
(

ā + (1 − τ)(ǫw + n̄w̄) + T̄ − q̄a′
)

− γ(n̄ + ǫ)

+ βV
(

a′, (1 − x)(n̄ + ǫ) + f(θ̄)(1 − n̄− ǫ)
)

)

.

Differentiate this with respect to ǫ and evaluate at ǫ = 0 to get the marginal value of an

employed worker at w:

V̂ǫ(w, 0) =
(1 − τ)w

c̄
− γ + β(1 − x− f(θ̄))Vn(ā, n̄) ≡ Ṽn(w).

Combining this with equation (2.11) gives a convenient expression for the marginal value of

having a worker employed at w rather than unemployed:

Ṽn(w) =
(1 − τ)(w − w̄)

c̄
+ Vn(ā, n̄). (2.12)

Vn(ā, n̄) is the marginal value of having a worker employed at the equilibrium wage rather

than unemployed. To this one adds the worker’s incremental after-tax income from receiving

an arbitrary wage rather than the equilibrium wage, (1−τ)(w−w̄), multiplied by the marginal

utility of income 1/c̄.
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Firms

Next I turn to the firm. It is again useful to express its problem recursively, suppressing time

arguments:

J(n) = max
ν∈[0,1]

(

(

z(1 − ν) − w̄
)

n + q̄J
(

(1 − x+ νµ(θ̄))n
)

)

, (2.13)

where ν = v/(v+ l) is the share of employees who are recruiters and the size of the firm next

period is n′ = (1− x+ νµ(θ̄))n. The firm’s value function is linear in n, J(n) = J̄n for all n,

where

J̄ = max
ν∈[0,1]

(

z(1 − ν) − w̄ + q̄
(

1 − x+ νµ(θ̄)
)

J̄
)

. (2.14)

The value function is linear because a firm that is twice as large as another but devotes the

same share of employees to recruiting earns twice as much current profits and is twice as

large next period.1

Since the objective function in equation (2.14) is linear in ν, the solution is typically

extreme, either ν = 0 or ν = 1. The former implies that firms shrink over time with

attrition, while the latter implies that there is no production, and so neither is consistent

with a steady state equilibrium. There is an interior solution only if

z = βµ(θ̄)J̄ , (2.15)

where I use q̄ = β. A producer yields output z today, while a recruiter generates µ(θ̄) addi-

tional employees, each valued at J̄ , tomorrow. For workers to be engaged in both activities,

these must be equal.

Eliminate J̄ between equations (2.14) and equation (2.15):

z = βµ(θ̄)
z − w̄

1 − β(1 − x)
. (2.16)

The left hand side is the current output of a worker using the production technology. The

right hand side is the expected number of additional workers attracted by a recruiter times the

present value of profits produced by those workers if they are all employed in the production

technology. If equation (2.16) holds, all firms find any value of ν ∈ [0, 1] optimal.

From equation (2.2), employment is constant if

ν̄ = x/µ(θ̄). (2.17)

More precisely, any individual firm earns the same present value of profits for any choice of

1I give a formal proof that the firm’s value is linear in the stochastic model in Section 2.2.
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{νt}; however, in the entire economy, a fraction ν̄ of all employed workers must be recruiters

in any particular period, so as to keep employment constant. Note that since ν̄ ∈ [0, 1] and

µ(θ) is nondecreasing, this equation places an upper bound on θ̄, µ(θ̄) ≥ x.

Now consider a firm that employs n̄ workers at w̄ and ǫ workers at w this period. All

wages revert to w̄ next period. Modifying equation (2.13) slightly, the value of such a firm is

Ĵ(w, ǫ) = max
ν

(

z(1 − ν)(n̄ + ǫ) − w̄n̄− wǫ+ q̄J̄
(

1 − x+ νµ(θ̄)
)

(n̄+ ǫ)
)

.

Differentiate this with respect to ǫ and evaluate at ǫ = 0 to get the marginal value of

employing a worker at w:

Ĵǫ(w, 0) = z − w + β(1 − x)J̄ ≡ J̃n(w).

Since J̄ = z− w̄+ β(1−x)J̄ , I can also express the marginal value of an employee paid w as

J̃n(w) = w̄ − w + J̄ , (2.18)

analogous to equation (2.12). The marginal value of employing a worker at an arbitrary wage

w this period is the marginal value of employing a worker at the equilibrium wage, J̄ , plus

the wage savings w̄ − w.

Wage

I next characterize the wage using equation (2.7). The first order condition for the equilibrium

wage is

φ
Ṽ ′

n(w̄)

Ṽn(w̄)
+ (1 − φ)

J̃ ′
n(w̄)

J̃n(w̄)
= 0.

From equation (2.12), Ṽ ′
n(w̄) = (1− τ)/c̄ and Ṽn(w̄) = Vn(ā, n̄), while equation (2.18) implies

J̃ ′
n(w̄) = −1 and J̃n(w̄) = J̄ . Therefore maximizing the Nash product is equivalent to making

the gains from trade proportionate:

(1 − φ)Vn(ā, n̄)c̄ = φ(1 − τ)J̄ . (2.19)

To find the equilibrium wage w̄, eliminate Vn and J̄ using equations (2.11) and (2.15):

(1 − φ)
(1 − τ)w̄ − γc̄

1 − β(1 − x− f(θ̄))
= φ(1 − τ)

z

βµ(θ̄)
.
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Eliminate 1 − β(1 − x) from the left hand side using equation (2.16) and simplify:

(1 − φ)
(1 − τ)w̄ − γc̄

µ(θ̄) z−w̄
z

+ f(θ̄)
= φ(1 − τ)

z

µ(θ̄)
.

Recalling that f(θ) = θµ(θ), solve for the after-tax wage:

(1 − τ)w̄ = φ(1 − τ)z(1 + θ̄) + (1 − φ)γc̄. (2.20)

The after-tax wage is a weighted average of (1−τ)z(1+ θ̄) and γc̄, with the weight on the first

term equal to workers’ bargaining power. If a worker is employed, she can directly produce

(1 − τ)z units of after-tax output. In addition, by marginally reducing the unemployment

rate, she frees up θ̄ workers to produce output rather than recruit, since θ̄ is the aggregate

recruiter-unemployment ratio. That is, these additional workers can produce while keeping

the recruiter-unemployment ratio constant. Thus (1 − τ)z(1 + θ̄) measures the additional

after-tax output generated by moving a worker from unemployment to employment, i.e. the

marginal product of labor. The worker captures a fraction φ of the MPL. On the other hand,

if a worker is employed, she suffers disutility γ. To value this in consumption units, divide by

the marginal utility of consumption 1/c̄. Thus γc is the marginal rate of substitution between

consumption and leisure. The worker keeps a fraction 1 − φ of the MRS. In a frictionless

model, the MRS and MPL are equal and both are equal to the wage. With search frictions,

there are typically gains from trade, so the MPL is larger than the MRS and the wage is a

weighted average of the two, with weights determined by bargaining power.

Equation (2.20) states that a worker with higher consumption, or equivalently a lower

marginal utility of wealth, is paid a higher wage. This is due to the increase in her threat

point when evaluated in consumption-equivalent units. Yet when I solved the household’s

consumption problem, I implicitly assumed that her wealth does not affect her wage. One

possible interpretation is that a firm cannot observe a household’s wealth when bargaining.

While a worker would like to claim to be rich so as to boost her wage, firms bargain as if

they are facing a worker with the representative household’s marginal utility of wealth 1/c̄.

Another interpretation is that each firm bargains simultaneously with all its workers and they

agree on a common wage. Assuming households spread their workers across many firms, a

single household’s decision to save more will not affect the wage that its members receive,

eliminating any incentive to distort its savings.
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2.1.7 Equilibrium

Five objects completely characterize an equilibrium: consumption c̄, employment n̄, the

wage w̄, the recruiter-unemployment ratio θ̄, and the fraction of employed workers who are

recruiters ν̄. I have obtained three relationships between these variables: equation (2.8),

which gives the steady state employment rate; equation (2.16), which gives a condition for

an interior solution and equation (2.20), which determines the wage. To close the model, I

use two market clearing conditions. First, consumption is equal to output:

c̄ = zn̄(1 − ν̄). (2.21)

For the representative household, a fraction n̄ workers are employed, and of those, a fraction

1 − ν̄ each produce z units of the consumption good. Second, there are ν̄n̄ recruiters and

1 − n̄ unemployed workers, so the ratio of recruiters to unemployed workers is

θ̄ =
ν̄n̄

1 − n̄
. (2.22)

Given a solution to these five equations, it is easy to solve for any other variable of interest.

To find the equilibrium, first eliminate ν̄ from equation (2.21) using equation (2.22) and

then eliminate n̄ using equation (2.8). This implies that consumption is proportional to

productivity,

c̄ =
z(f(θ̄) − xθ̄)

f(θ̄) + x
.

Next eliminate w̄ from equation (2.16) using equation (2.20) and then eliminate c̄ using the

preceding equation to obtain an equation in θ̄ alone, T (θ̄) = 0 where

T (θ) ≡ θ(1 − β(1 − x))

βf(θ)
− 1 + φ(1 + θ) +

(1 − φ)γ(f(θ) − xθ)

(1 − τ)(x+ f(θ))
. (2.23)

To prove an equilibrium exists, observe that T is continuous. Moreover, T (0) = −(1−φ) < 0

since by assumption limθ→0 f(θ)/θ = ∞. On the other hand, T (θ̃) = (1−β)/(βx)+φ(1+θ̃) >

0, where f(θ̃)/θ̃ = x. By the intermediate value theorem, there must exist a θ̄ ∈ (0, θ̃) such

that T (θ̄) = 0. For some functional forms there may be multiple solutions to this equation,

but in particular cases it is easy to verify uniqueness. Indeed, I have not found an example

with multiple solutions to this equation.

An important observation is that productivity z does not appear in equation (2.23) and

so the equilibrium ratio of recruiters to unemployed workers is independent of productivity.

The key to this result is that income and substitution effects cancel. In an economy with high

productivity, workers earn higher wages. The substitution effect makes leisure less attractive,
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while the income effect makes it more attractive. With these preferences, or balanced growth

preferences more generally, the two effects balance and so there is no change in equilibrium

recruiting effort.

For a given value of the ratio of recruiters to unemployed workers θ̄, recover employ-

ment n̄ from equation (2.8) and then the fraction of employees who are recruiters ν̄ from

equation (2.22), proving both are independent of productivity. Also use equation (2.21) to

find consumption c̄ and equation (2.20) to get the wage w̄, both proportional to productivity.

Last, one can use equation (2.6) to compute the level of transfers T̄ .

Finally, one can verify that the household’s assets are equal to the value of the jobs

that it owns, ā = J̄ n̄. Combining the household budget constraint, equation (2.4), and the

government budget constraint, equation (2.6), and using q̄ = β gives

ā =
c̄− w̄n̄

1 − β
.

Eliminate c̄ using equation (2.21), w̄ using equation (2.16), and ν̄ using equation (2.22):

ā =
zn̄

1 − β

(

− θ̄(1 − n̄)

n̄
+

1 − β(1 − x)

βµ(θ̄)

)

.

Finally, note that (1 − n̄)/n̄ = x/f(θ̄) and µ(θ̄) = f(θ̄)/θ̄. This gives ā = zn̄/βµ(θ̄), and so

the result follows from equation (2.15). This is just a version of Walras’s law: when all other

markets clear, the asset market must clear as well.

2.1.8 The Measured Labor Wedge

Consider an economist who believes that households have preferences given by equation (1.1),

with disutility of leisure γ̂ and Frisch labor supply elasticity ε̂, that the production function

is Cobb-Douglas with capital share α̂, and that the labor market clears without any search

frictions. Then from equation (1.12), he would measure the labor wedge as

τ̂ = 1 − γ̂

1 − α̂
(c/y)n

1+ε̂
ε̂ .

But if the model in this section were the true data generating process, consumption would

equal output and employment would be given by equation (2.8). Thus he would measure

τ̂ = 1 − γ̂

1 − α̂

(

f(θ̄)

f(θ̄) + x

)
1+ε̂

ε̂

.
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In particular, if the economist correctly understood that production used only labor (α̂ = 0)

and that the Frisch labor supply elasticity was infinite (ε̂ = ∞), he would measure

τ̂ = 1 − γ̂
f(θ̄)

f(θ̄) + x
. (2.24)

It is not surprising that the labor wedge is constant in steady state. The important point is

that it bears little resemblance to the true tax rate τ . The economist would attribute less-

than-full employment to taxes or the disutility of work, when in fact it is also a consequence

of the search frictions.

A particularly acute example occurs if γ = 0, so there is no disutility of work. In this

case, equation (2.23) implies that the ratio of recruiters to unemployed is independent of the

tax rate τ , because the pre-tax wage and hence the incentive to create jobs is independent

of the tax rate (equation 2.20). It follows that any difference in the labor income tax rate

in different countries does not cause differences in the employment rate. But an economist

viewing the world through the lens of the frictionless model would conclude that there must

be some disutility of labor, γ̂ > 0; otherwise he would expect everyone to work. Using

equation (2.24), he would then have difficulty understanding why there is no difference in

employment rates across countries despite large differences in taxes.2

2.2 Productivity Shocks

I now extend the model to allow for shocks to the production technology. As before, denote

time by t = 0, 1, 2, . . . and the state of the economy at time t by st. Let st = {s0, s1, . . . , st}
denote the history of the economy and Π(st) denote the time-0 belief about the probability of

observing an arbitrary history st through time t. I allow productivity and lump-sum transfers

to be history-dependent. Each producer in history st produces output z(st) and each worker,

employed or unemployed, receives a lump-sum transfer T (st), set at a level to ensure that

the government runs a balanced budget in each period. Assume z(st) is strictly positive for

all st and, to ensure utility is finite, assume that

−∞ <

∞
∑

t=0

∑

st

βtΠ(st) log z(st) <∞. (2.25)

2Of course, this problem is not present in the data. There are substantial differences in tax rates across
countries, but these can only partially explain the differences in employment rates, even if the elasticity of
labor supply is large; see, for example, Prescott (2004).
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In this section, I prove that consumption c(st) and the wage w(st) are each proportional

to contemporaneous productivity z(st), while the recruiter-unemployment ratio θ(st), the

employment rate n(st), and the fraction of employed workers in recruiting ν(st) are constant

and independent of the stochastic process for productivity. The notion of equilibrium is the

same as in the model without productivity shocks and so I proceed somewhat less formally,

presenting the model and the key equilibrium relationships together.

2.2.1 Firms

A representative firm employs n0 = n(s0) workers at time 0 and subsequently assigns em-

ployees to the stochastic production technology and the deterministic recruiting technology.

Its value solves

J(s0, n0) =

∞
∑

t=0

∑

st

q0(s
t)
(

z(st)(n(st, n0) − v(st, n0)) − w(st)n(st, n0)
)

, (2.26)

where q0(s
t) is the price of an Arrow-Debreu security that pays one unit of consumption

following history st, denominated in units of history-s0 consumption. Output in history st is

z(st) times the number of employees not devoted to recruiting, n−v, while the wage is w(st)

per employee. In addition, the firm’s size evolves according to

n(st+1, n0) = v(st, n0)µ(θ(st)) + (1 − x)n(st, n0) (2.27)

for all st+1 = {st, st+1}. Each recruiter attracts µ(θ(st)) new workers, while a fraction x of

the existing labor force leaves. The firm chooses history-contingent recruiting v(st, n0) to

maximize the value of profits J(s0, n0).

A simple argument proves that the firm’s value is linear in n0. Take any two initial sizes,

n0 > n′
0 > 0. Suppose a firm with initial size n′

0 sets recruiting to (n′
0/n0)v(s

t, n0) in each

history st. Then using induction on equation (2.27), one can verify that the firm’s size is

(n′
0/n0)n(st, n0) in each history. From equation (2.26), the firm’s profits are (n′

0/n0)J(s0, n0).

Since behaving optimally generally yields more profits, J(s0, n′
0) ≥ (n′

0/n0)J(s0, n0). A

symmetric argument, that a firm with n0 workers can mimic a scaled version of the optimal

policy for a firm with n′
0 workers, establishes that J(s0, n0) ≥ (n0/n

′
0)J(s0, n′

0). Combining

these inequalities implies J(s0, n0)/n0 = J(s0, n′
0)/n

′
0 = J̄(s0), so the value of the firm per

employee is independent of firm size. The same logic implies that ν(st) = v(st, n0)/n(st, n0),

the fraction of workers devoted to recruiting, is independent of n0.

This allows me to simplify the analysis by focusing on the firm’s value per employee.

Let J̄(st) denote the present value of the firm’s profits per employee following history st,
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evaluated in time t, history st units of consumption. This solves the recursive equation

J̄(st) = max
ν∈[0,1]

(

z(st)(1 − ν) − w(st) +
(

νµ(θ(st)) + 1 − x
)

∑

st+1|st

qt(s
t+1)J̄(st+1)

)

, (2.28)

where qt(s
t+1) is the price of a unit of consumption in history st+1 ≡ {st, st+1}, paid in units

of history-st consumption. The firm chooses the fraction of its workers who are recruiters

ν. It earns revenue z(st)(1 − ν) per worker this period, pays a wage w(st), and then, from

equation (2.27), grows by a factor νµ(θ(st)) + 1 − x. The summation gives the expected

discounted value of continuation profits from each employee.

Since both the production and recruiting technologies are linear, an individual firm’s

choice of whether to produce or recruit is typically indeterminate; however, aggregate pro-

duction and recruiting is determined in equilibrium. To see this, note from equation (2.28)

that an interior solution, 0 < ν(st) < 1, requires

z(st) = µ(θ(st))
∑

st+1|st

qt(s
t+1)J̄(st+1), (2.29)

so the foregone profits from devoting a worker to recruiting rather than production are

exactly offset by the increase in the continuation value of the firm. If this condition holds,

the Bellman equation (2.28) simplifies to read

J̄(st) = z(st)

(

1 +
1 − x

µ(θ(st))

)

− w(st). (2.30)

Part of the revenue from a job comes from the output that the worker can produce, z(st). In

addition, suppose the firm has a target size next period. An additional employee this period

remains at the firm next period with probability 1 − x. Since each recruiter can attract

µ(θ(st)) new workers, the presence of an additional employee frees (1 − x)/µ(θ(st)) other

employees from recruiting, enabling them to produce z(st) units of output each. The value

of a job is the sum of these two components, net of the wage w(st) that the worker receives.

Finally, compute the value of a job that pays an arbitrary wage w in history st and

then pays w(sτ) if it survives until a continuation history sτ , τ > t. Analogous with

equation (2.18),

J̃n(st, w) = w(st) − w + J̄(st). (2.31)

This simply increments the value of a job by the reduction in the wage below the equilibrium,

w(st) − w.
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2.2.2 Households

The representative household allocates total consumption following history st, c(st), in order

to maximize the sum of household utility, acting as if it has a utility function

∞
∑

t=0

∑

st

βtΠ(st)
(

log c(st) − γn(st)
)

, (2.32)

where n(st) is the fraction of household members who are employed following history st. The

household faces a single lifetime budget constraint,

a0 =
∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ)w(st)n(st) − T (st)
)

. (2.33)

Here a0 is the household’s initial level of assets in units of consumption at time 0.

The household also faces a constraint on unemployment. The probability an unemployed

worker finds a job depends on the contemporaneous ratio of recruiters to unemployed workers,

f(θ(st)), while the probability an employed worker loses her job is a constant x. Thus the

household takes n0 as given and recognizes that

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)) (2.34)

for any st+1 = {st, st+1}. Note that the household cannot control its employment rate, which

depends on parameters and on the endogenous ratio of recruiters to unemployed workers.

The household chooses a path for consumption c(st) to maximize equation (2.32) subject to

the budget constraint in equation (2.33), taking as given the path of its employment rate in

equation (2.34).

Define the representative household’s assets following any history st as the present value

of future consumption in excess of labor income,

a(st) =

∞
∑

t′=t

∑

st′ |st

qt(s
t′)
(

c(st′) − (1 − τ)w(st′)n(st′) − T (st′)
)

, (2.35)

denominated in units of consumption in history st. Here qt(s
t′) is the price of one unit of

consumption in continuation history st′ , paid in units of consumption in history st. This

implies a standard sequence of intertemporal budget constraints:

a(st) + (1 − τ)w(st)n(st) + T (st) = c(st) +
∑

st+1|st

qt(s
t+1)a(st+1), (2.36)
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Following any history, initial assets plus current period after-tax labor income and transfers

must equal consumption plus the purchase of one period Arrow securities that provide next

period’s assets.

As in the case of firms, I express the household’s problem recursively. Let V (st, a, n)

denote the household’s utility in history st, given assets a and employment n. This solves

the Bellman equation

V (st, a, n) = max
{a(st+1)}

(

log c− γn+ β
∑

st+1|st

Π(st+1)

Π(st)
V
(

st+1, a(st+1), n′
)

)

, (2.37)

where a(st+1) is the household’s purchase of Arrow securities that pay off in history st+1 =

{st, st+1}; consumption c solves the intertemporal budget constraint, equation (2.36):

c = a + (1 − τ)w(st)n+ T (st) −
∑

st+1|st

qt(s
t+1)a(st+1);

and next period’s employment solves equation (2.34):

n′ = (1 − x)n+ f(θ(st))(1 − n).

The envelope condition for current assets is

Va(s
t, a, n) =

1

c̃(st, a, n)
,

where c̃(st, a, n) is the consumption of a household that starts history st with assets a and

employment n. The first order condition for next period’s assets is

qt(s
t+1)

c̃(st, a, n)
= β

Π(st+1)

Π(st)
Va(s

t+1, a(st+1), n′).

Combining these and looking at a household with initial assets a(st) and employment n(st)

gives the Euler equation that prices an Arrow security:

qt(s
t+1) = β

Π(st+1)c(st)

Π(st)c(st+1)
(2.38)

for any st+1 = {st, st+1}, where c(st) ≡ c̃(st, a(st), n(st)) is the household’s equilibrium level

of consumption. This is, of course, a completely standard asset pricing equation in any model

with complete markets.

The envelope condition for current employment for a household with assets a(st) and
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employment n(st) in history st is

Vn(s
t, a(st), n(st)) =

(1 − τ)w(st)

c(st)
− γ

+ β(1 − x− f(θ(st)))
∑

st+1|st

Π(st+1)

Π(st)
Vn(st+1, a(st+1), n(st+1)). (2.39)

Finally, compute the marginal value to a household with the equilibrium level of employment

and assets of having one employed worker in a job that pays an arbitrary wage w in history

st and then pays w(sτ) if it survives until a continuation history sτ , τ > t. Analogous with

equation (2.12), this solves

Ṽn(st, w) =
(1 − τ)(w − w(st))

c(st)
+ Vn(st, a(st), n(st)). (2.40)

This increments the value of an employed worker by the increase in the after-tax wage,

measured in units of marginal utility.

2.2.3 Government

The government runs a balanced budget in each period, rebating tax revenue lump-sum to

households:

T (st) = τw(st)n(st). (2.41)

2.2.4 Wages

Wages are determined at the start of each period by bargaining between households and

firms. If they agree on a wage w following history st, the household’s utility increases by

Ṽn(s
t, w) and the value of the job is J̃n(st, w). The wage w(st) maximizes the weighted

geometric average of the gains from trade,

w(st) = arg max
w

Ṽn(st, w)φJ̃n(st, w)1−φ, (2.42)

where φ ∈ [0, 1] represents workers’ bargaining power.

Equation (2.31) implies ∂J̃n(st, w)/∂w = −1 and J̃n(st, w(st)) = J̄(st). Equation (2.40)

implies ∂Ṽn(st, w)/∂w = (1 − τ)/c(st) and Ṽn(s
t, w(st)) = Vn(s

t, a(st), n(st)). Maximizing

equation (2.42) is therefore equivalent to setting

(1 − φ)Vn

(

st, a(st), n(st)
)

c(st) = φ(1 − τ)J̄(st).
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Use this to eliminate Vn(st, a(st), n(st)) and Vn(st+1, a(st+1), n(st+1)) from equation (2.39):

φ(1 − τ)J̄(st) = (1 − φ)
(

(1 − τ)w(st) − γc(st)
)

+ φ(1 − τ)β(1 − x− f(θ(st)))
∑

st+1|st

Π(st+1)c(st)

Π(st)c(st+1)
J̄(st+1).

Next eliminate J̄(st) using equation (2.30) and J̄(st+1) using equation (2.29), with qt(s
t+1)

given from equation (2.38). After simplifying I obtain the wage equation

(1 − τ)w(st) = φ(1 − τ)z(st)(1 + θ(st)) + (1 − φ)γc(st). (2.43)

This is only a slight generalization of equation (2.20), with the wage depending on con-

temporaneous values of productivity, the ratio of recruiters to unemployed workers, and

consumption, rather than steady state values. The interpretation of the wage is similarly

unchanged.

2.2.5 Market Clearing

Close the model using two market clearing conditions. First, consumption is equal to output:

c(st) = z(st)n(st)(1 − ν(st)). (2.44)

For the representative household, a fraction n(st) workers are employed, and of those, a

fraction 1 − ν(st) each produces z(st) units of the consumption good. Second, the ratio of

recruiters to unemployed workers is

θ(st) =
ν(st)n(st)

1 − n(st)
. (2.45)

2.2.6 Equilibrium

Let θ̄ solve equation (2.23) and suppose the initial employment level solves equation (2.8),

i.e.

n0 = n̄ =
f(θ̄)

f(θ̄) + x
.

I claim that there is an equilibrium with the desired properties: consumption, wages, and

transfers are proportional to contemporaneous productivity, c(st) = c̄z(st), w(st) = w̄z(st),

and T (st) = T̄ z(st); while the recruiter-unemployment ratio, the share of recruiters in em-
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ployment, and the employment rate are constant, θ(st) = θ̄, ν(st) = ν̄, and n(st) = n̄.3

To prove this, note that if θ(st) = θ̄ for all st, the initial condition n0 = n̄ and the

law of motion for employment, equation (2.34), ensure that n(st) = n̄ for all st. Then

equation (2.45) implies

ν(st) = x/µ(θ̄) ≡ ν̄

for all st; equation (2.44) implies c(st) = c̄z(st), where

c̄ = n̄(1 − ν̄) =
f(θ̄) − xθ̄

f(θ̄) + x
; (2.46)

and equation (2.43) implies w(st) = w̄z(st), where

w̄ = φ(1 + θ̄) + (1 − φ)γc̄/(1 − τ). (2.47)

To confirm that this is an equilibrium, substitute these results into the condition for an

interior equilibrium, equation (2.29), with J̄(st+1) given by equation (2.30):

z(st) =
(

1 − x+ µ(θ̄)(1 − w̄)
)

∑

st+1|st

qt(s
t+1)z(st+1).

Equation (2.38) and c(st) = c̄z(st) imply qt(s
t+1) = βΠ(st+1)z(st)

Π(st)z(st+1)
. Substitute this into the

previous equation and eliminate z(st) to get

1 = β
(

1 − x+ µ(θ̄)(1 − w̄)
)

. (2.48)

Eliminating w̄ and then c̄ using equations (2.47) and (2.46) delivers equation (2.23). Finally,

condition (2.25) ensures that the household’s utility is finite.

How can productivity shocks have no effect on employment? Consider a temporary in-

crease in productivity. Since this does not alter the efficiency of hiring workers, all else equal,

firms would shift workers from recruiting to production, raising consumption and reducing

hiring, i.e. future employment and output. But there is an offsetting general equilibrium

effect. Since productivity is temporarily high, consumption is temporarily high. For this

to be an equilibrium, the interest rate must be low, i.e. the intertemporal price q must

be high, which makes future output more valuable, encouraging hiring. With the prefer-

3If n0 6= n̄, the model has some transitional dynamics. I show how to deal with this in Chapter 3, in
models where productivity shocks necessarily affect the unemployment rate. In practice, I find that the
economy converges rapidly to steady state. Also, there may be other equilibria of the model. For example, in
a deterministic discrete time version of Pissarides (1985), a deterministic cycle can arise. In that environment,
one can prove uniqueness if the period length is sufficiently short.
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ences in equation (2.32), these effects exactly offset, regardless of the stochastic process

for productivity. Indeed, the stochastic process for productivity does not itself affect the

recruiter-unemployment ratio or the unemployment rate.

This finding builds on Blanchard and Gaĺı’s (2006) neutrality result in a model with labor

adjustment costs. It also recalls some results from frictionless business cycle models. Take a

standard framework, as in Chapter 1, but assume there are two production technologies, one

for producing the consumption good and one for producing the investment good. If there is

no government spending and if households have preferences as in equation (1.1), productivity

shocks in the consumption-good-producing sector do not affect employment or the allocation

of labor across the two sectors. Again, this is because income and substitution effects exactly

offset. On the other hand, shocks to the investment good sector, which here would be

equivalent to shocks to the matching function µ, cause movements in both employment and

investment.

The assumption that the recruiting technology uses labor rather than goods is critical for

this neutrality result. If the recruiting technology used goods, a positive productivity shock

would effectively reduce the cost of recruiting, inducing an increase in hiring during booms.

Many authors assume recruiting is in fact goods-intensive; see Merz (1995) and Andolfatto

(1996) for examples. On the other hand, the textbook matching model (Pissarides, 1985,

2000) assumes that, while recruiting costs are denominated in goods, a productivity shock

raises the recruiting shock proportionately. This is technically equivalent to assuming that the

recruiting technology uses labor and is unaffected by the productivity shock. This assumption

seems empirically more plausible. Recruiting is, in fact, a time-intensive activity. Moreover,

it seems a priori implausible that shocks to the cost of recruiting drive cyclical fluctuations

in employment.

The neutrality result is stronger than the finding in Shimer (2005), where I argued that

productivity shocks have a quantitatively small effect on employment in a calibrated version of

the Pissarides (1985) model. There are several important differences between the frameworks.

First, in the earlier paper, I assumed households have linear preferences over consumption

and leisure and so there are no general equilibrium effects on interest rates. When future

productivity is anticipated to be low relative to current productivity, firms reduce hiring.

Second, in the earlier paper I assumed that recruiting uses goods rather than labor. Moving

away from linear preferences and recognizing that recruiting is a labor-intensive activity both

seem like desirable modifications to the model.4

4It is worth stressing that the finding in Shimer (2005) is quantitative while the neutrality result here
is exact. Some authors have argued with the calibration in that earlier paper; see especially Hagedorn and
Manovskii (2008), who argue for a different calibration of the value of leisure and the bargaining parameter
φ. The neutrality result holds here regardless of bargaining powers and regardless of how much workers like
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2.2.7 The Measured Labor Wedge

Since productivity shocks do not affect employment and the consumption-output ratio is

fixed at 1, such shocks do not affect the measured labor wedge. Again consider an economist

who believes households have preferences given by equation (1.1), with disutility of leisure

γ̂ and Frisch labor supply elasticity ε̂, that the production function is Cobb-Douglas with

capital share α̂, and that the labor market clears without any search frictions. If this model

were the data generating process, he would measure

τ̂ = 1 − γ̂

1 − α̂

(

f(θ̄)

f(θ̄) + x

)
1+ε̂

ε̂

. (2.49)

The measured labor wedge would be constant. Thus this model fails both to generate fluc-

tuations in employment and fluctuations in the labor wedge.

2.3 Planner’s Problem

Consider a hypothetical social planner who wants to maximize the utility of the representative

household. He takes as given an initial level of employment n0 = n(s0) and decides how many

workers to allocate to production and how many to recruiting in each state. The measure of

recruiters determines future employment, while the measure of producers determines current

consumption.

Formally, it is easiest to assume that the planner chooses the history-contingent share of

recruiters in employment {ν(st)} and the history-contingent recruiter-unemployment ratio

{θ(st)} to maximize the household’s utility

∞
∑

t=0

∑

st

βtΠ(st)
(

log
(

z(st)n(st)(1 − ν(st))
)

− γn(st)
)

,

where n(st) is employment in history st and z(st)n(st)(1 − ν(st)) is consumption in that

history, subject to the usual constraint on the evolution of employment,

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)),

where st+1 = {st, st+1} and θ(st) = ν(st)n(st)/(1 − n(st)) is the recruiter-unemployment

ratio.

leisure, i.e. regardless of the value of γ.
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Taking advantage of the properties of the log function, express the objective function as

∞
∑

t=0

∑

st

βtΠ(st)
(

log
(

n(st)(1 − ν(st))
)

− γn(st)
)

+ Z(s0),

where

Z(s0) ≡
∞
∑

t=0

∑

st

βtΠ(st) log z(st)

is a finite constant. Note that the objective function is additively separable between the ex-

ogenous productivity process, summarized through Z(s0), and the planner’s choice variables.

Moreover, productivity does not appear in the constraint on the evolution of employment.

It is immediate that the solution to the planner’s problem is independent of Z(s0), i.e. ν(st),

θ(st), and n(st) do not depend on the path of productivity shocks. This parallels the finding

in the decentralized economy. The household’s utility in any history st is then equal to the

sum of two terms, W (n), which depends on its current employment rate but not st, and

Z(st), the expected present value of the sum of future log z(st′).

I proceed by expressing W (n) recursively. This solves

W (n) = max
θ

(

log(n− θ(1 − n)) − γn+ βW
(

(1 − x)n+ f(θ)(1 − n)
)

)

,

where n−θ(1−n) = n(1−ν) since ν = θ(1−n)/n. One can think of W (n) as the maximized

utility of a household if z(st) = 1 for all st. The first term is utility from consumption, the

second is disutility from work, and the third is the continuation value, which depends on

next period’s employment.

The first order and envelope conditions are

1

n− θ(1 − n)
= βf ′(θ)W ′

(

(1 − x)n+ f(θ)(1 − n)
)

and

W ′(n) =
1 + θ

n− θ(1 − n)
− γ + β(1 − x− f(θ))W ′

(

(1 − x)n+ f(θ)(1 − n)
)

.

In steady state, n = (1−x)n+f(θ)(1−n) and so the previous equations reduce to T ∗(θ̄) = 0

where

T ∗(θ) =
1 − β(1 − x− f(θ))

βf ′(θ)
− (1 + θ) + γ

f(θ) − θx

f(θ) + x
.

T ∗ is continuous in θ with T ∗(0) = −1 and T ∗(θ̃) = (1−β)/(βf ′(θ̃))+
(

f(θ̃)/θ̃f ′(θ̃)−1
)

(1+

θ̃) > 0, where f(θ̃)/θ̃ = x.5 By the intermediate value theorem, there must exist a θ̄ ∈ (0, θ̃)

such that T ∗(θ̄) = 0.

5Concavity of f ensures that f(θ) ≥ θf ′(θ) for all θ > 0.
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In general, the social planner’s recruiter-unemployment ratio is not an equilibrium allo-

cation, but it is under one set of conditions. Assume τ = 0, so there are no distortionary

taxes, and φ = 1− θf ′(θ)/f(θ), so workers’ bargaining power is equal to the elasticity of the

number of meetings with respect to the unemployment rate, the Mortensen (1982)–Hosios

(1990) condition. Then one can verify that T (θ) = (θf ′(θ)/f(θ))T ∗(θ) in equation (2.23), so

the any solution to T ∗(θ̄) also solves T (θ̄) = 0. If the Mortensen-Hosios condition is violated

(and τ = 0), the equilibrium level of unemployment will be inefficient.

The relationship between the equilibrium and the solution to the social planner’s problem

is not purely a normative issue. Moen (1997) and Shimer (1996) consider an environment

where firms can post wage contracts in an effort to attract workers. Workers observe all

the contracts and decide where to apply, trading off the probability of getting a contract

f(θ) against the terms of the contract. Thus when one firm offers a relatively high wage, its

recruiters are more productive. Those papers find that the allocation in a competitive search

equilibrium without taxes solves a social planner’s problem, maximizing the utility of the

representative household. Establishing this result in the current environment would require

a significant investment in new notation and so I omit the proof. But the point is that there

are reasons to believe that a decentralized economy may achieve the planner’s allocation.

2.4 Extensions

2.4.1 Labor Force Participation

In the benchmark model, a household has no control over its employment rate, which is de-

termined by the balance between the exogenous separation rate x and the endogenous—but

exogenous to the household—job finding rate f(θ(st)), in equation (2.34). This section gener-

alizes the model by giving households control over their future employment rate through the

allocation of nonemployed workers between two tasks: unemployment, which allows workers

to find jobs; and inactivity, which provides more leisure. This extension is interesting for two

reasons. First, it shows that the neutrality result does not rely on households being passive

actors in the labor market. Second, Figure 1.6 shows that the employment-population ratio

is somewhat more volatile than the unemployment-population ratio, so some fluctuations in

employment induce workers to drop out of the labor force, rather than become unemployed.

Thinking about labor force participation potentially allows the model to address this fact.

The representative household allocates total consumption following history st, c(st), in
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order to maximize the sum of its individuals’ utility, acting as if it has a utility function

∞
∑

t=0

∑

st

βtΠ(st)
(

log c(st) − γnn(st) − γuu(s
t)
)

, (2.50)

where n(st) is the fraction of household members who are employed following history st

and u(st) is the fraction of household members who are unemployed. The remaining 1 −
n(st) − u(st) household members are inactive. Implicit in this formulation, the utility of

an employed household member who consumes c is log c− γn; the utility of an unemployed

household member who consumes c is log c − γu; and the utility of an inactive household

member who consumes c is log c. I assume that γu > 0, so workers suffer some disutility from

unemployment compared to the omitted third category, inactivity. In addition, it may be

natural to assume that γn ≥ γu, so unemployed workers enjoy more leisure than do employed

workers; however, that restriction is not necessary for what follows.

The household faces a single lifetime budget constraint, identical to equation (2.33) and

repeated here for convenience.

a0 =

∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ)w(st)n(st) − T (st)
)

. (2.51)

The household can freely move workers between unemployment and inactivity. However,

workers can only find jobs by going through unemployment, which constrains employment.

The probability that an unemployed worker finds a job depends only on the contemporaneous

ratio of recruiters to unemployed workers, θ(st), while the probability an employed worker

loses her job is a constant x. Inactive workers cannot find jobs. Thus the household takes n0

as given and recognizes that

n(st+1) = (1 − x)n(st) + f(θ(st))u(st) (2.52)

for any st+1 = {st, st+1}. The household can raise its future employment rate by increas-

ing its current unemployment rate, at the cost of higher current disutility. The household

chooses a path for consumption c(st) and unemployment u(st) to maximize equation (2.50)

subject to the budget constraint in equation (2.51) and the law of motion for employment in

equation (2.52).

To express this problem recursively, let V (st, a, n) denote the value of a household in
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history st with assets a and n employed members. This solves

V (st, a, n) = max
{a(st+1)},u∈[0,1−n]

(

log c− γnn− γuu

+ β
∑

st+1|st

Π(st+1)

Π(st)
V
(

st+1, a(st+1), n′
)

)

, (2.53)

with c solving the intertemporal budget constraint,

c = a + (1 − τ)w(st)n+ T (st) −
∑

st+1|st

qt(s
t+1)a(st+1),

and next period’s employment determined from current employment and unemployment as

n′ = (1 − x)n + f(θ(st))u.

As before, the first order condition for a(st+1),

qt(s
t+1)

c(st)
= β

Π(st+1)

Π(st)
Va

(

st+1, a(st+1), n(st+1)
)

,

and the envelope condition for a(st),

Va(s
t, a(st), n(st)) =

1

c(st)
,

yield the standard Euler equation for the price of an Arrow security, equation (2.38) and

repeated here,

qt(s
t+1) = β

Π(st+1)c(st)

Π(st)c(st+1)
. (2.54)

Assuming an interior solution for next period’s employment, so some workers are unemployed

and some are inactive, the first order condition for u(st),

γu = βf(θ(st))
∑

st+1|st

Π(st+1)

Π(st)
Vn

(

st+1, a(st+1), n(st+1)
)

,

and the envelope condition for n(st),

Vn(st, a(st), n(st)) =
(1 − τ)w(st)

c(st)
− γn + β(1 − x)

∑

st+1|st

Π(st+1)

Π(st)
Vn

(

st+1, a(st+1), n(st+1)
)

,
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reduce to

γu = βf(θ(st))
∑

st+1|st

Π(st+1)

Π(st)

(

(1 − τ)w(st+1)

c(st+1)
− γn +

γu(1 − x)

f(θ(st+1))

)

. (2.55)

The left hand side is the current cost of switching a marginal worker from inactivity to

unemployment, foregone leisure. The right hand side is the benefit: next period, if the

worker is hired, with probability f(θ(st)), the household will earn more labor income, valued

at the marginal utility of wealth 1/c(st+1). From this, subtract the disutility of working

γn. Moreover, the household can offset the increase in employment at t + 1 by reducing

unemployment and increasing inactivity by enough to return the employment rate to its

normal value in period t+2. This generates leisure from additional inactivity in period t+1.

The rest of the household’s problem is unchanged; in particular, the marginal value to

the household of an employed worker in a job that pays an arbitrary wage w in history st and

then pays w(sτ ) if it survives until a continuation history sτ is still given by equation (2.40),

rewritten here as

Ṽn(st, w) =
(1 − τ)(w − w(st))

c(st)
+ Vn(st, a(st), n(st)). (2.56)

The firm’s problem is unchanged and so the wage solves

(1 − τ)w(st) = φ(1 − τ)z(st)(1 + θ(st)) + (1 − φ)γnc(s
t), (2.57)

identical to equation (2.43) except in the notation for the marginal rate of substitution

between consumption and leisure. For firms to be indifferent between current production

and recruiting, it must be the case that

z(st) = µ(θ(st))
∑

st+1|st

qt(s
t+1)J̄(st+1). (2.58)

This ensures that the value of employing a worker is equal to the amount she produces plus

the number of recruiters that she frees up times the amount they produce minus the wage:

J̄(st) = z(st)

(

1 +
1 − x

µ(θ(st))

)

− w(st). (2.59)

Finally, market clearing imposes that consumption is equal to output,

c(st) = z(st)n(st)(1 − ν(st)), (2.60)
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and the ratio of recruiters to unemployed workers is

θ(st) =
ν(st)n(st)

u(st)
. (2.61)

As in the benchmark model, I claim that there is an equilibrium with a constant ratio

of recruiters to unemployed workers, θ(st) = θ̄, a constant share of workers in recruiting,

ν(st) = ν̄, constant employment and unemployment, n(st) = n̄ and u(st) = ū, with the wage

and consumption proportional to productivity, w(st) = w̄z(st) and c(st) = c̄z(st). To prove

this, observe that in such an equilibrium equation (2.55) reduces to

γu =
βf(θ̄) ((1 − τ)w̄ − γnc̄)

(1 − β(1 − x))c̄
, (2.62)

while the wage equation (2.57) becomes

(1 − τ)w̄ = φ(1 − τ)(1 + θ̄) + (1 − φ)γnc̄.

Eliminating c̄ between these equations gives

w̄ =

(

(1 − β(1 − x))γu + βf(θ̄)γn

)

φ(1 + θ̄)

(1 − β(1 − x))γu + βφf(θ̄)γn

. (2.63)

This defines the ratio of the wage to productivity as a function of model parameters and the

ratio of recruiters to unemployed workers. To close the model, proceed as in the case without

a labor force participation margin: equations (2.54), (2.58), and (2.59) imply

1 = β
(

1 − x+ µ(θ̄)(1 − w̄)
)

, (2.64)

identical to equation (2.48), a second relationship between the wage and the ratio of recruiters

to unemployed workers. Eliminate w̄ between these two equations to get an expression for θ̄

alone, T (θ̄) = 0 where

T (θ) ≡ θ(1 − β(1 − x))

βf(θ)
− 1 +

(

(1 − β(1 − x))γu + βf(θ)γn

)

φ(1 + θ)

(1 − β(1 − x))γu + βφf(θ)γn
, (2.65)

a modest variant of equation (2.23). Observe that since limθ→0 f(θ)/θ = ∞, T (0) = −1+φ <

0. At the other end, limθ→∞ f(θ)/θ = 0 implies limθ→∞ T (θ) = ∞. Since T is continuous on

(0,∞), there is a solution to T (θ) = 0 on this interval. Moreover, each of the terms in T is

increasing in θ, which ensures that the equilibrium is unique.

Once I have found θ̄, it is straightforward to recover the remaining variables of interest.
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Obtain w̄ from equation (2.63) and c̄ from equation (2.62). In the proposed equilibrium,

equation (2.52) reduces to xn̄ = f(θ̄)ū, while equation (2.61) becomes θ̄ = ν̄n̄/ū. Eliminating

n̄/ū from the latter equation using the former gives down ν̄ = xθ̄/f(θ̄); this ensures that firms’

hiring rate ν̄µ(θ̄) just offsets their attrition rate x. Finally, pin down the employment level

from equation (2.60), n̄ = c̄/(1 − ν̄), and the unemployment level ū from ū = ν̄n̄/θ̄.

A curious property of the equilibrium is that θ̄, w̄, and ν̄ are independent of the tax

rate τ , while c̄, n̄, and ū are proportional to 1 − τ . Raising taxes to fund lump-sum benefits

discourages participation in the labor force but does not distort activities for workers who are

in the labor force. More relevant to the theme of this book, this model has both equilibrium

unemployment and inactivity, but neither is affected by productivity shocks.

2.4.2 Variable Hours

I now extend the model to consider an intensive margin for hours. More precisely, I assume

that employed workers and firms bargain both over an hourly wage and over the number

of hours worked. This ensures that the choice of hours is bilaterally efficient, so workers

and firms exploit all the gains from trade. Again, the objective is two-fold: to verify the

robustness of the neutrality result; and to allow the model to address the data along addi-

tional dimensions. Figure 1.5 shows that the correlation between detrended employment and

detrended hours is 0.97, but the standard deviation of detrended hours is 1.3 times as large

as the standard deviation of detrended employment. In other words, during periods when

employment is high relative to trend, hours per employee is typically also above trend. For

simplicity I abstract from the decision to participate in the labor market, although one could

allow for both margins.

The representative household chooses a sequence for {c(st)} to maximize

∞
∑

t=0

∑

st

βtΠ(st)

(

log c(st) − γε

1 + ε
n(st)h(st)

1+ε
ε

)

, (2.66)

where n(st) is the fraction of household members who are employed and h(st) is the hours

worked by each employed household members following history st. I continue to think of

this as representing the sum of individual utilities, where the utility of an individual who

consumes c and works h hours (possibly h = 0) is log c − γε
1+ε

h
1+ε

ε . The household faces a

single lifetime budget constraint,

a0 =
∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ)w(st)n(st)h(st) − T (st)
)

, (2.67)
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where w(st) is the hourly wage, while its employment rate evolves exogenously according to

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)). (2.68)

Below I discuss how employed workers and firms bargain over wages and hours.

Let V (st, a, n) denote the value of a household with assets a and n employed workers in

history st. This solves

V (st, a, n) = max
{a(st+1)}

(

log c− γε

1 + ε
nh(st)

1+ε
ε + β

∑

st+1|st

Π(st+1)

Π(st)
V
(

st+1, a(st+1), n′
)

)

, (2.69)

where c satisfies the intertemporal budget constraint,

c = a+ (1 − τ)w(st)nh(st) + T (st) −
∑

st+1|st

qt(s
t+1)a(st+1),

and next period’s employment is determined from current employment and unemployment

as

n′ = (1 − x)n+ f(θ(st))(1 − n).

As usual, the first order condition for next period’s assets and the envelope condition for

current assets yield the Euler equation,

qt(s
t+1) = β

Π(st+1)c(st)

Π(st)c(st+1)
. (2.70)

The envelope condition for employment is

Vn(s
t, a(st), n(st)) =

(1 − τ)w(st)h(st)

c(st)
− γε

1 + ε
h(st)

1+ε
ε

+ β(1 − x− f(θ(st)))
∑

st+1|st

Π(st+1)

Π(st)
Vn(st+1, a(st+1), n(st+1)), (2.71)

a generalization of equation (2.39). Also let Ṽn(st, w, h) denote the marginal value to a

household with the equilibrium level of assets and employment of having a worker employed

at a wage w and working h hours rather than unemployed in history st. If she remains

employed in continuation history st+1, she earns the equilibrium wage w(st+1) and works the
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equilibrium number of hours h(st+1). This satisfies

Ṽn(s
t, w, h) =

(1 − τ)
(

wh− w(st)h(st)
)

c(st)

− γε

1 + ε

(

h
1+ε

ε − h(st)
1+ε

ε

)

+ Vn(st, a(st), n(st)). (2.72)

The first term gives the after-tax income generated by a worker employed at (w, h) rather

than at the equilibrium wage-hour pair (w(st), h(st)), evaluated in utils by multiplying by

marginal utility 1/c(st). The second term gives the utility cost of the extra hours of work.

The third term is the marginal value of having the worker employed at the equilibrium wage

and hours rather than unemployed.

The representative firm earns profit z(st) from each hour of labor devoted to production

and recruits µ(θ(st)) workers with each hour of labor devoted to recruiting, where I now

interpret θ(st) as the ratio of the number of recruiting hours to the number of unemployed

workers. The firm’s value in history s0 with n0 workers is

J(s0, n0) =

∞
∑

t=0

∑

st

q0(s
t)
(

z(st)(n(st) − v(st)) − w(st)n(st)
)

h(st), (2.73)

where v(st) is the number of employees devoted to recruiting in history st. The firm employs

n(st) − v(st) producers, each of whom works h(st) hours and produces z(st) per hour in

history st. In addition, it pays a wage w(st) for each hour of work. Firm growth satisfies

n(st+1) = v(st)h(st)µ(θ(st)) + (1 − x)n(st), (2.74)

where st+1 = {st, st+1}. Each of the v(st) recruiters works h(st) hours and recruits µ(θ(st))

per hour of work. In addition, a fraction 1 − x of the old labor force remains for another

period.

As usual, the firm’s value is linear in its employment rate and so its value per employee

solves the recursion

J̄(st) = max
ν

(

(

z(st)(1 − ν) − w(st)
)

h(st)

+
(

νh(st)µ(θ(st)) + 1 − x
)

∑

st+1|st

qt(s
t+1)J̄(st+1)

)

, (2.75)

where ν is the fraction of the workforce devoted to recruiting. The condition for an interior
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equilibrium for recruiting is

z(st) = µ(θ(st))
∑

st+1|st

qt(s
t+1)J̄(st+1), (2.76)

unchanged from equation (2.29). If this holds, the Bellman equation (2.75) reduces to

J̄(st) = z(st)

(

h(st) +
1 − x

µ(θ(st))

)

− w(st)h(st). (2.77)

An additional employee can produce z(st)h(st) units of output. In addition, with probability

1−x she remains at the firm next period, so the firm can reduce the number of recruiters by

(1− x)/h(st)µ(θ(st)) while keeping its size unchanged. The workers released from recruiting

instead produce z(st)h(st) units of output. Finally, the worker is paid an hourly wage w(st).

Again let J̃n(st, w, h) denote the marginal value to the firm of having a worker employed

at an arbitrary wage w and working an arbitrary number of hours h in history st, and then

the equilibrium wage and hours thereafter. This satisfies

J̃n(s
t, w, h) = (z(st) − w)h− (z(st) − w(st))h(st) + J̄(st). (2.78)

This is the marginal value of an employed worker at the equilibrium wage and hours plus the

additional profits from paying the worker w for h hours of work, rather than the equilibrium

values (w(st), h(st)).

I assume that the household and firm bargain jointly over both wages and hours, so the

equilibrium wage and hours satisfies the Nash bargaining solution

(w(st), h(st)) = arg max
w,h

Ṽn(st, w, h)φJ̃n(st, w, h)1−φ. (2.79)

This ensures that the household and firm agree on a Pareto optimal division of the gains

from trade.6 Under equation (2.79), the first order condition for wages is

(1 − φ)Vn(s
t, a(st), n(st))c(st) = φ(1 − τ)J̄(st), (2.80)

unchanged from the model without an hours margin. The first order condition for the choice

6One can conceive of other assumptions here. For example, the household and firm may bargain over
the wage and then the firm unilaterally sets hours. Typically this will lead to a Pareto inefficient outcome.
This alternative does not affect the main result, neutrality of productivity shocks. I focus on this assumption
because it may not be plausible that workers and firms who repeatedly interact would get stuck at an
inefficient allocation.



2.4. EXTENSIONS 57

of hours is
φ
(

γc(st)h(st)
1

ε − (1 − τ)w(st)
)

Vn(st, a(st), n(st))c(st)
=

(1 − φ)(z(st) − w(st))

J̄(st)
.

Solve these two equations for the choice of hours:

h(st) =

(

(1 − τ)z(st)

γc(st)

)ε

. (2.81)

The choice of hours does not directly depend on workers’ bargaining power but rather is set

at a bilaterally efficient level to maximize the monetary gains from trade between a worker

and firm, Ṽn(st, w, h)c(st) + (1− τ)J̃n(st, w, h). Instead, the worker and firm use the wage to

divide the gains from trade.

As in the model without hours, it is possible to solve equations (2.70), (2.71), (2.76),

(2.77), and (2.80) for the equilibrium wage:

(1 − τ)w(st) = φ(1 − τ)z(st)

(

1 +
θ(st)

h(st)

)

+ (1 − φ)c(st)
γε

1 + ε
h(st)

1

ε ,

a generalization of equation (2.43). The after-tax hourly wage is a weighted average of the

marginal product of labor—the increase in output from having an additional worker, both

because of the output she produces and because of the recruiters who can be reallocated to

production—and the marginal rate of substitution between consumption and leisure. Elimi-

nating h(st) from the last term using equation (2.81) simplifies this further:

w(st) =

(

φ

(

1 +
θ(st)

h(st)

)

+ (1 − φ)
ε

1 + ε

)

z(st). (2.82)

To close the model, I use the two market clearing conditions: consumption is equal to

output,

c(st) = z(st)n(st)h(st)(1 − ν(st)), (2.83)

and the ratio of hours of recruiters’ time to unemployed workers is

θ(st) =
ν(st)n(st)h(st)

1 − n(st)
. (2.84)

I look for an equilibrium with a constant ratio of recruiting hours to unemployed workers,

θ(st) = θ̄, a constant share of workers in recruiting, ν(st) = ν̄, constant employment, n(st) =

n̄, constant hours, h(st) = h̄, with the wage and consumption proportional to productivity,

w(st) = w̄z(st) and c(st) = c̄z(st). To find the six constants, use equations (2.70), (2.76),



58 CHAPTER 2. BENCHMARK SEARCH MODEL

and (2.77) to prove that if such an equilibrium exists,

1 = β
(

1 − x+ h̄µ(θ̄)(1 − w̄)
)

.

The algebra is similar to that behind equation (2.48). Then eliminate w̄ using this expression

and equation (2.82). Solving for hours gives:

h̄ =
1 + ε

1 − φ

(

1 − β(1 − x)

βµ(θ̄)
+ φθ̄

)

. (2.85)

Similarly, in an equilibrium with this characterization, eliminate c̄, n̄, and ν̄ between the

employment equation (2.68), the hours equation (2.81), the market clearing condition in

equation (2.83), and the definition of θ in equation (2.84). This gives

h̄ =

(

(1 − τ)(x+ f(θ̄))

γ
(

µ(θ̄)h̄− x
)

θ̄

)ε

. (2.86)

Eliminating h̄ between equations (2.85) and (2.86), I find that an equilibrium is determined

as a θ̄ solving T (θ̄) = 0 where

T (θ) =
1 + ε

1 − φ

(

1 − β(1 − x)

βµ(θ)
+ φθ

)

−





β(1 − φ)(1 − τ)(x+ f(θ))

γθ
(

(1 + ε)
(

1 − β(1 − x) + βφf(θ)
)

− β(1 − φ)x
)





ε

.

The first term is increasing in θ, rising from 0 at θ = 0 (since µ(0) = ∞) to ∞ at θ = ∞.

The second term is decreasing in θ, since (x + f(θ))/θ is decreasing while the rest of the

denominator is nondecreasing in θ. It evaluates to ∞ at θ = 0 and then drops to 0 at θ = ∞.

Since both terms are continuous in θ, T is continuous, increasing, and maps the positive real

line into the real line. The equation T (θ̄) = 0 therefore has a unique solution.

Using this solution it is straightforward to recover h̄, c̄, n̄, ν̄, and w̄ from the expressions

used to construct equations (2.85)–(2.86). Since productivity shocks affect neither employ-

ment nor hours worked, I again conclude that they do not affect the measured labor wedge.

2.4.3 Other Extensions

Many other extensions do not alter the neutrality result. I mention three here but omit the

proofs, since they simply repeat the structure of the previous arguments.
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First, I have assumed that unemployed workers get leisure but no monetary transfer. In

reality, however, many also receive unemployment benefits. Suppose that each unemployed

worker gets a benefit that is proportional to the average wage, say b̄w(st) in history st for

some b̄ ∈ (0, 1). Assuming benefits are taxed, the household budget constraint reads

a0 =
∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ)w(st)
(

n(st) + b̄(1 − n(st))
)

− T (st)
)

.

The government uses tax revenue to pay both benefits and transfers, with constraint

T (st) + (1 − τ)b̄w(st)(1 − n(st)) = τw(st)n(st).

I find that unemployment benefits put upward pressure on wages and so reduce recruiting

and hence employment; however, the neutrality result stands.7

Second, I have assumed that the government rebates all of its tax revenue to households.

In reality, government spending also represents a significant part of the budget. Suppose the

representative household has preferences over consumption, labor supply, and government

spending g(st),
∞
∑

t=0

∑

st

βtΠ(st)
(

log c(st) − γn(st) + ψ(g(st))
)

,

and faces the usual budget constraint, equation (2.33). The government uses tax revenue to

fund both spending and lump-sum rebates:

T (st) + g(st) = τw(st)n(st).

The resource constraint, equation (2.44), must be modified to account for the additional use

of output:

c(st) + g(st) = z(st)n(st)(1 − ν(st)).

If government spending is proportional to productivity, g(st) = ḡz(st) for all histories st, the

neutrality result carries over to this environment. Consumption, spending, and wages are all

proportional to productivity, while employment is constant.

Is the assumed proportionality of government spending and productivity reasonable? It

is optimal if ψ(g) ∝ log g, in which case the government should keep public and private

spending proportional. Moreover, g(st) = ḡz(st) is a plausible description of how governments

in fact behave. The assumption implies that government spending is also proportional to

7In reality, unemployment benefits are usually indexed to past, not current wages. This would create some
nonneutrality in response to productivity shocks.
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tax revenue, g(st) = g̃τw(st)n(st), where ḡ ≡ g̃τ w̄n̄. While this ignores the possibility of

government spending shocks, it is consistent with procyclical spending induced by a balanced

budget requirement. Again, the neutral case seems like a reasonable benchmark.

Third, I have assumed production uses only labor. Suppose there are two types of firms

or, equivalently, two production technologies that are available to all firms.8 A capital-good

producer converts ℓk(s
t) units of labor and kk(s

t) units of capital into zkkk(s
t)αkℓk(s

t)1−αk

units of capital, which it sells at a price p(st), denominated in units of the consumption

good. A consumption-good producer converts ℓc(s
t) units of labor and kc(s

t) units of capital

into zc(s
t)kc(s

t)αcℓc(s
t)1−αc units of the consumption good, with relative price 1. Both types

of firms also recruit new workers, with each recruiter attracting µ(θ(st)) workers in the

following period. Capital partially depreciates in production and capital used in history

st+1 = {st, st+1} is purchased in history st.

In this environment, I find that shocks to the technology for producing the consump-

tion good, zc(s
t), affect neither the amount of capital used nor the number of producers

or recruiters in either sector. Instead, consumption, the wage and the price of the capital

good are all proportional to the productivity shock. Effectively capital and labor are now

both acquired through investment technologies—the capital production technology and the

recruiting technology—that are not subject to shocks. Given the symmetry between the two

technologies, it is not surprising that the neutrality result in the model with only a recruiting

technology carries over to this more general model.

2.5 Discussion

Search and matching models help explain why there is unemployment. In the absence of

unemployment, recruiting would be unproductive and wages would be high. Both forces

would deter firms from putting resources into recruiting new workers, which would push up

the unemployment rate. The models that I have developed in this chapter show exactly how

the equilibrium unemployment rate is determined.

But it does not logically follow that search and matching models can explain why there

are fluctuations in unemployment. In the models in this chapter, the stochastic process for

productivity and the realization of productivity shocks have no impact on the unemployment

rate. This finding is useful for two reasons. First, it makes solving the models relatively

straightforward, and in particular ensures that a closed-form solution is available. This is

8In Chapter 3 I consider a one-sector model with capital, where a single technology is used to produce
both the consumption and the capital good, and find that this breaks the neutrality result. The key difference
is that in the one-sector model, a temporary increase in productivity makes investment more productive and
so encourages capital accumulation. That effect is absent from the two-sector model.
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convenient for understanding how the model works. Second, the neutrality result provides a

convenient benchmark. In the remainder of the book, I look at extensions to this model that

break the result, but it will always be useful to refer back to this benchmark to understand

the behavior of those more complicated models.
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Chapter 3

Real Effects of Productivity Shocks

I now extend the benchmark search model to study environments in which productivity shocks

affect employment. The assumptions that drive the exact neutrality result in Chapter 2 are

special, in the sense that almost any conceivable modification would break the finding. I start

in Section 3.1 with what is perhaps the easiest modification of the benchmark model, an alter-

native formulation of preferences. More precisely, I maintain the assumption that preferences

are consistent with balanced growth, but I relax the assumption that the intertemporal elas-

ticity of substitution in consumption is equal to one, or equivalently that preferences are

additively separable in consumption and leisure. If households are less willing to substitute

intertemporally, then interest rates need to rise less in response to a temporary increase in

productivity. This raises the profitability of recruiting new workers, so firms shift employees

from production to recruiting. This behavioral response both moderates the initial consump-

tion response and induces a prolonged rise in employment. But in a calibrated version of the

model, I find that this change in preferences causes only tiny movements in employment and

the labor wedge.

In Section 3.2, I reintroduce physical capital into the model. This is not only a realistic

assumption, but it is qualitatively important because it gives households a savings technology.

Even with the preferences in Chapter 2, a temporary increase in productivity causes a smaller

reduction in interest rates when households can save some of their additional income. This

again raises the profitability of recruiting new workers, pulling down the unemployment rate.

But in a calibrated version of the model, the response of employment and the labor wedge

to productivity shocks remains very small. Moreover, I confirm the intuition that search

frictions create a positive correlation between employment and the labor wedge, in contrast

to the data in Table 1.1. Effectively search frictions moderate the response of employment

to the shock. An economist who looked at data generated by the model, but who did not

recognize the existence of the frictions, would incorrectly conclude that the labor wedge rises

63
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in booms, dampening what would otherwise be a larger increase in employment.

In Section 3.3, I introduce a shock to the employment exit probability x, imperfectly

correlated with the productivity shock. I do this mainly for realism. Since the seminal

book by Davis, Haltiwanger, and Schuh (1996), a number of authors have stressed that the

job destruction rate rises sharply in downturns. Building on this, Mortensen and Pissarides

(1994) extend the Pissarides (1985) search and matching model to allow for an endogenous

increase in the employment exit probability during downturns. Although I maintain the

simpler assumption that the employment exit probability is exogenous, I can still examine

whether fluctuations in x significantly affect the behavior of the model. My conclusion is

negative. Fluctuations in employment and the labor wedge are modest and the correlation

between the two outcomes is positive, not negative as in the data. Intuitively, an increase in

the employment exit probability has little effect on the desired employment rate, but instead

leads to an increase in recruiting effort as households and firms work to restore this level of

employment. This change in the balance between recruiting and production has only a small

impact on the outcomes that I study in this book.

3.1 General Preferences

I start by relaxing the assumption that the marginal utility of consumption is independent

of work effort, allowing for more general balanced growth preferences. I find that, unless

the stochastic process for productivity satisfies a particular condition, productivity shocks

have real effects on employment because income and substitution effects no longer cancel.

To evaluate the size of these effects, I calibrate the model and linearize it around a stochastic

steady state. Since I will build on this calibration and on the numerical approach throughout

the remainder of the book, I describe them carefully here. I conclude that the impact of

productivity shocks is quantitatively minuscule.

3.1.1 Households

Assume the period utility function of household member i is c1−σ(1+(σ−1)γ)σ−1
1−σ

if she consumes

c and is employed, and c1−σ−1
1−σ

if she consumes c and is not employed, where σ > 0 describes

the substitutability of consumption and leisure and γ > 0 describes the disutility of work.

The utility function for an employed household member recalls equation (1.13), specialized

to the case with indivisible labor.

A representative household maximizes the sum of utilities of its members, acting as if it
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has utility function

∞
∑

t=0

∑

st

βtΠ(st)

(

ce(s
t)1−σ

(

1 + (σ − 1)γ
)σ − 1

1 − σ
n(st) +

cu(s
t)1−σ − 1

1 − σ
(1 − n(st))

)

, (3.1)

where ce(s
t) is the consumption of each employed household member, cu(s

t) is the consump-

tion of each unemployed household member, and n(st) is the household employment rate in

history st.

The household faces a single lifetime budget constraint, that initial assets must be equal

to the difference between the present value of consumption and the present value of after-tax

labor income plus transfers,

a0 =
∞
∑

t=0

∑

st

q0(s
t)
(

ce(s
t)n(st) + cu(s

t)(1 − n(st)) − (1 − τ)w(st)n(st) − T (st)
)

. (3.2)

The budget constraint is unchanged from the previous chapter, e.g. equation (2.33), except

for the distinction between the consumption of the employed and the consumption of the un-

employed. As before, the evolution of employment is exogenous to the household, determined

by the law of motion

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)) (3.3)

for any st+1 = {st, st+1}. This too is unchanged from equation (2.34). The household

maximizes equation (3.1) subject to equation (3.2) and equation (3.3).

The new piece of this problem is the choice of the relative consumption of employed and

unemployed household members. Place a multiplier λ on the lifetime budget constraint and

take the first order condition for the choice of ce and cu to get

βtΠ(st)ce(s
t)−σ

(

1 + (σ − 1)γ
)σ

= βtΠ(st)cu(s
t)−σ = λq0(s

t),

proving that the consumption of employed workers is always proportional to the consumption

of unemployed workers, ce(s
t)/cu(s

t) = 1+(σ−1)γ. Let c(st) ≡ ce(s
t)n(st)+cu(s

t)(1−n(st))

denote average consumption. Then

cu(s
t) =

c(st)

1 + (σ − 1)γn(st)
and ce(s

t) =
c(st)

(

1 + (σ − 1)γ
)

1 + (σ − 1)γn(st)
.

Substituting these results into equations (3.1) and (3.2) implies that the household acts as if
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it has a utility function defined over average consumption c(st) and labor supply n(st),

∞
∑

t=0

∑

st

βtΠ(st)
c(st)1−σ

(

1 + (σ − 1)γn(st)
)σ − 1

1 − σ
, (3.4)

faces the same budget constraint as in the previous chapter,

a0 =

∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ)w(st)n(st) − T (st)
)

, (3.5)

and faces the same law of motion for employment, equation (3.3). Notably household pref-

erences over consumption and the fraction of the household that works are identical to the

balanced growth, constant Frisch elasticity case I studied in equation (1.13), with an infinite

Frisch elasticity of labor supply.

To proceed further, write the household’s problem recursively:

V (st, a, n) = max
{a(st+1)}

(

c1−σ
(

1 + (σ − 1)γn
)σ − 1

1 − σ
+ β

∑

st+1|st

Π(st+1)

Π(st)
V
(

st+1, a(st+1), n′
)

)

,

(3.6)

where consumption solves the intertemporal budget constraint

c = a + (1 − τ)w(st)n+ T (st) −
∑

st+1|st

qt(s
t+1)a(st+1),

and next period’s employment solves

n′ = (1 − x)n+ f(θ(st))(1 − n).

Using the envelope condition for assets and the first order condition for a(st+1), I obtain an

expression for the price of an Arrow security:

qt(s
t+1) = β

Π(st+1)

Π(st)

(

c(st)
(

1 + (σ − 1)γn(st+1)
)

c(st+1)
(

1 + (σ − 1)γn(st)
)

)σ

. (3.7)

This modification of equation (2.38) recognizes that the marginal utility of consumption

depends on the household’s employment rate when σ 6= 1.

Next write the envelope condition for employment for a household with the equilibrium
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level of assets and employment:

Vn(s
t, a(st), n(st)) =

(

c(st)

1 + (σ − 1)γn(st)

)−σ

(1 − τ)w(st) −
(

c(st)

1 + (σ − 1)γn(st)

)1−σ

σγ

+ β
(

1 − x− f(θ(st))
)

∑

st+1|st

Π(st+1)

Π(st)
Vn

(

st+1, a(st+1), n(st+1)
)

. (3.8)

The first term gives the increase in utility from the additional consumption afforded by having

one more working household member. The second term gives the decrease in utility from the

lower leisure. The third term is the continuation utility. Finally, the marginal value of having

a worker employed at an arbitrary wage w this period and the equilibrium wage thereafter

satisfies

Ṽn(st, w) =

(

c(st)

1 + (σ − 1)γn(st)

)−σ

(1 − τ)(w − w(st)) + Vn(st, a(st), n(st)), (3.9)

since the marginal utility of consumption is
(

c(st)/(1 + (σ − 1)γn(st))
)−σ

. The proof of this

result follows the same logic as is behind equation (2.12).

3.1.2 Firms

The change in household preferences does not affect the firm’s problem. I repeat the key

equations here for convenience. First, there is an interior solution for recruiting effort if

productivity is equal to the expected value of the jobs created by a recruiter:

z(st) = µ(θ(st))
∑

st+1|st

qt(s
t+1)J̄(st+1). (3.10)

Second, the value of a job is equal to the workers’ productivity plus the productivity of the

other workers released from recruiting minus the wage:

J̄(st) = z(st)

(

1 +
1 − x

µ(θ(st))

)

− w(st). (3.11)

Finally, the marginal value of a job paying an arbitrary wage w this period and the equilibrium

wage thereafter is equal to the marginal value of a job paying the equilibrium wage plus the

reduction in the wage w(st) − w:

J̃n(st, w) = w(st) − w + J̄(st). (3.12)
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3.1.3 Wages

As in the benchmark model, I assume wages are determined at the start of each period by

bargaining between households and firms. If they agree on a wage w following history st,

household utility increases by Ṽn(st, w) and the value of the job is J̃n(st, w). The wage w(st)

maximizes the weighted geometric average of the gains from trade,

w(st) = arg max
w

Ṽn(st, w)φJ̃n(st, w)1−φ, (3.13)

where φ ∈ [0, 1] represents workers’ bargaining power.

Take the first order condition forw. Using equations (3.9) and (3.12) to compute Ṽn(st, w),

J̃n(s
t, w), and their derivatives with respect to w, I obtain

(1 − φ)Vn

(

st, a(st), n(st)
)

(

c(st)

1 + (σ − 1)γn(st)

)σ

= φ(1 − τ)J̄(st).

Use this to eliminate Vn from equation (3.8). Simplifying with the Euler equation (3.7) gives

φ(1 − τ)J̄(st) = (1 − φ)(1 − τ)w(st) − (1 − φ)σγc(st)

1 + (σ − 1)γn(st)

+ φ(1 − τ)
(

1 − x− f(θ(st))
)

∑

st+1|st

qt(s
t+1)J̄(st+1).

Eliminate J̄(st+1) using equation (3.10) and J̄(st) using equation (3.11):

(1 − τ)w(st) = φ(1 − τ)z(st)(1 + θ(st)) +
(1 − φ)γσc(st)

1 + (σ − 1)γn(st)
. (3.14)

This is a modest generalization of equation (2.43).

3.1.4 Equilibrium

The remainder of the model is unchanged. Consumption is equal to the output created by

the n(st)(1 − ν(st)) producers,

c(st) = z(st)n(st)(1 − ν(st)), (3.15)

and θ is the recruiter-unemployment ratio:

θ(st) =
ν(st)n(st)

1 − n(st)
. (3.16)
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In addition, the government budget constraint pins down the transfer,

T (st) = τw(st)n(st). (3.17)

The notion of equilibrium is also unchanged.

3.1.5 A Special Case

Under some conditions, there is an equilibrium in which productivity shocks do not affect

employment. To prove this, I again look for an equilibrium with a constant ratio of recruiters

to unemployed workers, θ(st) = θ̄, a constant share of workers in recruiting, ν(st) = ν̄, and

constant employment, n(st) = n̄, with the wage and aggregate consumption proportional to

productivity, w(st) = w̄z(st) and c(st) = c̄z(st).

If there is such an equilibrium, the wage equation (3.14) reduces to

(1 − τ)w̄ = φ(1 − τ)(1 + θ̄) +
(1 − φ)γσc̄

1 + (σ − 1)γn̄
.

Eliminate c̄, ν̄, and n̄ using steady state versions of equations (3.3), (3.15), and (3.16):

w̄ = φ(1 + θ̄) +
(1 − φ)γσ

(

f(θ̄) − xθ̄
)

(1 − τ)
(

x+ f(θ̄)
(

1 + (σ − 1)γ
)) . (3.18)

Then substitute equation (3.11) into equation (3.10), eliminating qt(s
t+1) using equation (3.7):

z(st)1−σ = βµ(θ̄)
∑

st+1|st

Π(st+1)

Π(st)
z(st+1)1−σ

(

1 − x+ µ(θ̄)

µ(θ̄)
− w̄

)

. (3.19)

There is an equilibrium of this form if and only if this equation can be satisfied in any history

st. That in turn requires that there exists a number s̄ satisfying

es̄ =





∑

st+1|st

Π(st+1)z(st+1)1−σ

Π(st)z(st)1−σ





1

1−σ

(3.20)

for all histories st. That is, the expected growth rate of z1−σ must be history-independent.

This restriction is trivially satisfied when σ = 1, the case I studied in Chapter 2. It also

holds whenever productivity growth is independently and identically distributed over time,

so z(st+1) = z(st)est+1, where st+1 is independently and identically distributed. In that case,

equation (3.20) defines s̄ so that the expected value of e(1−σ)s̄ is equal to the expected value
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of e(1−σ)st+1 . Otherwise the restriction is violated.

If equation (3.20) holds, eliminate w̄ from equation (3.19) using equation (3.18) to get

that an equilibrium is characterized by T (θ̄) = 0 where

T (θ) ≡ e−s̄(1−σ) − β(1 − x)

βµ(θ)
− 1 + φ(1 + θ) +

(1 − φ)γσ
(

f(θ) − xθ
)

(1 − τ)
(

x+ f(θ)
(

1 + (σ − 1)γ
)) . (3.21)

This generalizes equation (2.23) to the case where preferences are not separable between

consumption and leisure. However, the generalization only works under a particular joint

restriction on preferences and on the stochastic process for productivity.

3.1.6 Productivity and Unemployment

Even when equation (3.20) holds, the productivity growth rate affects the employment rate.

For example, suppose σ = 0, so workers are risk-neutral. Also assume productivity follows a

geometric random walk, so the growth rate of productivity is independently and identically

distributed over time, with expectation s̄. Then an equilibrium is characterized by a zero of

T , which reduces to

T (θ) =
e−s̄ − β(1 − x)

βµ(θ)
− 1 + φ(1 + θ).

In this case T is increasing in θ, ensuring that there is a unique equilibrium. Moreover, it is

decreasing in s̄. It follows that higher productivity growth raises the ratio of recruiting effort

to unemployment and hence lowers unemployment. To understand this result, think of the

related social planner’s problem, where the planner’s objective is maximizing workers’ utility.

Since the intertemporal elasticity of substitution in consumption is infinite when σ = 0, the

planner does not much mind delaying consumption to take advantage of future productivity

growth. He does this by putting more workers into recruiting. In the decentralized econ-

omy, the intertemporal price qt(s
t+1) does not depend on consumption growth when σ = 0

(equation 3.7). Then faster productivity growth raises the value of a job next period and

encourages firms to recruit more workers today (equation 3.10).

To proceed further, I calibrate the parameters of the model. I spend some time here

discussing the choice of parameters because I use them throughout the remainder of the

book. First it is necessary to set the length of a time period. Unemployment duration in

the United States is typically quite short, so most unemployed workers manage to find a

job within a quarter. To avoid a corner solution for workers’ matching probability f(θ),

I think of a time period as a month. I set the discount factor at β = 0.996, just under

five percent annually. The Bureau of Labor Statistics measures multifactor productivity

growth annually. I fix the productivity growth rate at s̄ = 0.0012, about 1.4 percent per
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year, consistent with the annual measures of multifactor productivity growth in the private

business sector constructed by the Bureau of Labor Statistics.1 I fix the tax rate at τ = 0.4,

the average marginal rate constructed by Prescott (2004).

I turn next to the parameters that determine flows between employment and unem-

ployment. In Shimer (2005), I measure the average exit probability from employment to

unemployment in the United States at x = 0.034 per month and I stick with that number

here for comparability. Although there are many estimates of the matching function f in the

literature (see the survey by Petrongolo and Pissarides, 2001), most papers assume that firms

create job vacancies in order to attract workers and so estimate matching functions using

data on unemployment and vacancies. The technology in this paper is slightly different, with

firms using workers to recruit workers. Unfortunately there is no good time series showing

the number of workers (or hours of work) devoted to recruiting, and so the choice of f is

somewhat arbitrary. Still, following much of the search and matching literature, I focus on

an isoelastic function, f(θ) = µ̄θη, and look at the symmetric case, η = 0.5.2

To pin down the efficiency parameter in the matching function µ̄, I build on evidence

in Hagedorn and Manovskii (2008) and Silva and Toledo (2009). Those papers argue that

recruiting a worker uses approximately 4 percent of one worker’s quarterly wage, i.e. a re-

cruiter can attract approximately 25 new workers in a quarter. Using this and the fact that

the unemployment rate in the United States was five percent on average during the post war

period, I determine µ̄. I proceed in several steps. First, from equation (3.3), the steady state

employment rate satisfies

n =
f(θ)

x+ f(θ)
.

Setting n = 0.95 and x = 0.034, this implies f(θ) = 0.646 in steady state. Second, the

functional form f(θ) = µ̄θη implies

µ̄ =
f(θ)

θη
= f(θ)1−ηµ(θ)η,

where the second equation follows because µ(θ) ≡ f(θ)/θ. From this equation, I set µ̄ = 2.32,

consistent with f(θ) = 0.646, µ(θ) ≈ 8.33, and η = 1/2. Note that this implies that the

recruiter-unemployment ratio is θ = f(θ)/µ(θ) ≈ 0.078. Using equation (3.16), the share of

recruiters in employment is ν = θ(1− n)/n ≈ 0.004, with 99.6 percent of employees devoted

to production. Thus in this calibration, the implicit hiring costs are small, at least on average.

1See ftp://ftp.bls.gov/pub/special.requests/opt/mp/prod3.mfptablehis.zip, Table 4. Between
1948 and 2007, productivity grew by 0.818 log points, or approximately 0.014 log points per year.

2Formally, I assume f(θ) = min{µ̄θη, 1} to ensure that it is a proper probability. In steady state f(θ) < 1
and so when I linearize around the steady state, the constraint f(θ) ≤ 1 is not binding.
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parameter value
discount factor β 0.996

mean productivity growth s̄ 0.0012
tax rate τ 0.4

employment exit probability x 0.034
matching function f(θ) 2.32θ1/2

workers’ bargaining power φ 0.5
consumption-labor complementarity σ 2

disutility of work γ 0.399
autocorrelation of productivity growth ρ 0.4

standard deviation of productivity growth ς 0.00325

Table 3.1: Calibrated parameter values with consumption-labor complementarities.

Finally, I turn to bargaining and preference parameters. I impose symmetry in the bar-

gaining problem, φ = 0.5. This assumption is important, and so I discuss the implications

of other choices for φ in various places throughout the book. I set the preference parameter

governing consumption-labor complementarities at σ = 2, consistent with a moderate differ-

ence between the consumption of the employed and non-employed (see Section 1.4). Finally,

I set the parameter governing the taste for leisure to match a five percent unemployment

rate along the balanced growth path; this imposes γ ≈ 0.399. Obviously this last parameter

is sensitive to the extent of consumption-labor complementarity. Table 3.1 summarizes these

parameter choices. Note that the last two rows are irrelevant with deterministic productivity

growth.

I use the calibrated model to examine how responsive the unemployment rate is to steady

state growth. Consider an economy with the same parameters but s̄ = 0.01, i.e. twelve

percent annual growth, a rate normally associated with a growth miracle. Because the

income effect outweighs the substitution effect when σ > 1, expectations of higher future

growth raises interest rates by enough to discourage firms from recruiting, raising current

production and the unemployment rate. Quantitatively, however, this effect is trivial. In

steady state, the unemployment rate rises from 5 to 5.05 percent from this enormous change

in productivity growth. Changes in other parameters do not much alter this conclusion. For

example, set the complementarity parameter σ = 4 and re-calibrate the disutility of work

to have a five percent unemployment rate. One percent monthly productivity growth raises

the unemployment rate to 5.16 percent. At the other extreme, with σ → 0 and γ again

re-calibrated, the unemployment rate remains at 5.00 percent when growth increases to one

percent per month.
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3.1.7 Productivity Shocks

In general, comparative statics need not be informative about how the economy responds

to shocks. I therefore next examine the behavior of the model when productivity growth is

stochastic. To be concrete, I assume productivity has a stochastic trend,

log z(st+1) = log z(st) + st+1,

where st+1 = {st, st+1} and st follows a first order Markov process: Π(st+1)/Π(st) = π(st+1|st)

is the probability of state st+1 next period conditional on state st this period, where st ≡
{st−1, st} and st+1 ≡ {st, st+1}. If productivity growth is serially correlated, so the distribu-

tion of st+1 in fact depends on st, the restriction in equation (3.20) fails. In this case, the

recruiter-unemployment ratio and employment vary with the state of the economy. I estab-

lish these results by solving the model numerically in a neighborhood of a balanced growth

path.

One might alternatively assume that productivity has a deterministic trend, log z(st) =

s̄t+ st, where st follows a stationary first order Markov process with mean 0 and s̄ is trend

productivity growth. This structure is common to much of the real business cycle literature

since Kydland and Prescott (1982). The results are similar and so I omit them for the sake

of brevity; however, in the remainder of the book I compare the behavior of economies with

deterministic and stochastic trends.

To describe the equilibrium, I reduce the system of equations describing the equilibrium

to pair of stationary equations that implicitly define how employment and the recruiter-

unemployment ratio depend productivity growth. Substitute equation (3.15) for c(st) in

equation (3.14) and write the wage relative to productivity as

w(st)

z(st)
= φ(1 + θ(st)) +

(1 − φ)γσn(st)(1 − ν(st))

(1 − τ)
(

1 + (σ − 1)γn(st)
) . (3.22)

Then substitute equation (3.11) into equation (3.10), eliminating qt(s
t+1) using equation (3.7)

and c(st) and c(st+1) using equation (3.15). Since by assumption z(st+1)/z(st) = est+1,

1 = βµ(θ(st))
∑

st+1|st

π(st+1|st)e
st+1(1−σ)

(

n(st)(1 − ν(st))
(

1 + (σ − 1)γn(st+1)
)

n(st+1)(1 − ν(st+1))
(

1 + (σ − 1)γn(st)
)

)σ

×
(

1 +
1 − x

µ(θ(st+1))
− w(st+1)

z(st+1)

)

. (3.23)

Eliminate w(st+1)/z(st+1) using equation (3.22). Finally, ν(st) and ν(st+1) are determined
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from equation (3.16) as

ν(st) =
θ(st)(1 − n(st))

n(st)
and ν(st+1) =

θ(st+1)(1 − n(st+1))

n(st+1)
, (3.24)

while n(st+1) satisfies equation (3.3). After making the various substitutions, I obtain an

equation relating current and future values of θ and n to current and future values of pro-

ductivity growth:

1 = βµ(θ(st))
∑

st+1|st

π(st+1|st)e
st+1(1−σ)

×
(

(

n(st) − θ(st)(1 − n(st))
)(

1 + (σ − 1)γn(st+1)
)

(

n(st+1) − θ(st+1)(1 − n(st+1))
)(

1 + (σ − 1)γn(st)
)

)σ

×
(

1 +
1 − x

µ(θ(st+1))
− φ(1 + θ(st+1))

− (1 − φ)γσ
(

n(st+1) − θ(st+1)(1 − n(st+1))
)

(1 − τ)
(

1 + (σ − 1)γn(st+1)
)

)

. (3.25)

I close the model using the law of motion for employment in equation (3.3), which also relates

current θ and n to future n.

Equations (3.3) and (3.25) define the recruiter-unemployment ratio and employment as

functions of the history of shocks. However, past shocks directly enter the equations only

through the current level of productivity growth st, which in turn affects the distribution of

next period’s productivity growth st+1. This motivates me to look for a solution to these

equations in which the recruiter-unemployment ratio depends only on current productivity

growth rate and current employment, say θ(st) = Θ(st, n(st)). Substitute this conjecture and

equation (3.3) into equation (3.25) to obtain an equation of the form

T (θ(st), st, n(st)) = 0. (3.26)

The functional form of T is messy and so I do not write it out explicitly. The point is that to

find an equilibrium, we must solve this functional equation. Note that in such an equilibrium,

employment depends only on lagged productivity growth and lagged employment, n(st+1) =

N(st, n(st)).

Although I cannot solve these equations exactly, I can easily approximate them in a
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neighborhood of the stochastic steady state. I assume

st+1 = s̄+ ρ(st − s̄) + ςυt+1, (3.27)

where υ is a white noise innovation with mean 0 and standard deviation 1 and so ς is the

standard deviation of the productivity shock, while ρ ∈ (0, 1) is its autocorrelation. I then

look for a log-linear approximation to the policy function Θ(s, n):

log θ = log θ̄ + θs(s− s̄) + θn(logn− log n̄). (3.28)

The parameter θ̄ is the recruiter-unemployment ratio in the stochastic steady state, while

θs represents the elasticity of the recruiter-unemployment ratio with respect to productivity

growth and θn represents the corresponding elasticity with respect to current employment.

To find these elasticities, eliminate θ(st) from equation (3.26) using equation (3.28):

T (θ̄eθs(s−s̄)+θn(log n−log n̄), s, n) = 0. (3.29)

I impose that T (θ̄, s̄, n̄) = 0 and that the derivatives of T with respect to s and n are zero at

the steady state as well. Together with the equation for the steady state employment rate,

n̄ = f(θ̄)/(x+ f(θ̄)), this pins down the four unknowns n̄, θ̄, θs, and θn.3

Compared to the deterministic model, there are two new parameters, the autocorrelation

and standard deviation of shocks to the productivity growth rate. I again pin these down

using annual measures of multifactor productivity growth in the private business sector.

The unconditional standard deviation of annual productivity growth is 0.0180, while the

annual autocorrelation is 0.043, barely positive. Because of time aggregation, determining

these as functions of the monthly productivity growth process takes a bit of algebra.4 Since

monthly productivity growth is a first-order autoregressive process, its unconditional variance

is E(s − s̄)2 = ς2/(1 − ρ2). I use this to compute the unconditional variance of annual

productivity growth.5 Using s+t to denote the t-period ahead value of productivity growth,

3More precisely, I fix n̄ = 0.95 and treat the disutility of work γ as an unknown parameter.
4A näıve calculation might suggest a correlation of ρ12 between productivity growth in consecutive years,

since ρ is the monthly autocorrelation. This is incorrect because it ignores the comparatively high correlation
between growth rates in December of one year and January of the next year. The formulas that follow
explicitly account for this.

5For a thorough treatment of stochastic linear difference equations, see Ljungqvist and Sargent (2004,
Section 2.4).
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annual productivity growth is
∑11

t=0 s+t and so its unconditional variance is

E

(

11
∑

t=0

(s+t − s̄)

)2

=

(

12 +

11
∑

t=1

2(12 − t)ρt

)

ς2

1 − ρ2
.

Similarly, the unconditional covariance of productivity growth in consecutive years is

E

(

11
∑

t=0

(s+t − s̄)

)(

23
∑

t=12

(s+t − s̄)

)

= ρ

(

11
∑

t=0

ρt

)2
ς2

1 − ρ2
.

To obtain these expressions, repeatedly substitute for s+t using equation (3.27) to get

s+t = s̄+ ρt(s− s̄) + ς
t
∑

t′=1

ρt−t′υt′ .

Use this to expand the products in the expressions for the variance and covariance. Since

Eυ+tυ+t′ = Eυ+ts = 0 for all t′ 6= t > 0, the only remaining terms take the form Eυ2
+t = 1 and

Es2 = ς2/(1 − ρ2). A bit more algebra then delivers the final expressions. Finally, the ratio

of the covariance to the variance gives the unconditional correlation between productivity

growth in consecutive years,

ρ
(
∑11

t=0 ρ
t
)2

12 +
∑11

t=1 2(12 − t)ρt
.

Using this expression and the target annual autocorrelation of 0.043, I pin down ρ = 0.4.

I then turn to the expression for the unconditional variance and use the annual target for

the standard deviation, 0.0180, to pin down ς = 0.00325. I leave the remaining parameters

unchanged at their values in Table 3.1.

With these parameter values, I solve the log-linearized system and find that

log θ = −2.557 − 0.779(s− 0.0012) + 0.228(logn− log 0.95),

which describes how the current recruiter-unemployment ratio depends on current produc-

tivity and employment. Since consumption and leisure are substitutes, higher productivity

encourages firms to produce rather than recruit, reducing future employment. Note that

for these parameters, higher employment also raises the recruiter-unemployment ratio; this

happens only with sufficiently high values of the substitutability parameter σ. When more

workers are employed, firms put more workers into recruiting, which mitigates the rise in

current production and hence consumption but raises future employment and consumption.

This takes advantage of the complementarity between consumption and employment in pref-
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erences.

Using the expression for θ, I then log-linearize equation (3.3) to characterize employment

next period as a function of current productivity and employment,

logn+1 = log 0.95 − 0.013(s− 0.0012) + 0.324(logn− log 0.95).

Finally, I use equation (3.27) to write next period’s productivity as

s+1 = 0.0012 + 0.4(s− 0.0012) + 0.00325υ+1.

These last two equations are a linear dynamic system. A key question is their stability. That

is, if productivity and employment start away from their steady state values, do they tend to

return to them? To answer this, let m ≡ {s− s̄, log n− log n̄} denote the state of the economy

and represent the transitional dynamics as m+1 = Am+Dυ+1, where A is a 2× 2 transition

matrix and so Am is the expected value of m+1 conditional on m and D determines how the

shock υ+1 affects the state of the system. For this choice of parameters,

A =

(

0.4 0

−0.013 0.324

)

and

D =

(

ς

0

)

,

where ς is the standard deviation of the innovation to the productivity process and the 0 in the

second entry for D indicates that productivity shocks have no direct effect on employment.

The dynamic system is locally stable, converging towards the steady state from any nearby

value of m = {s− s̄, log n− log n̄}, if and only if the eigenvalues of A all lie between −1 and 1.

Given the triangular structure of the transition matrix, the eigenvalues are just the diagonal

elements, 0.4 and 0.324 and so the system is in fact locally stable. Moreover, the size of the

eigenvalues tells us about the speed of convergence. The larger eigenvalue, 0.4, is associated

with the adjustment of productivity growth back to its normal level. The smaller eigenvalue,

0.324, is associated with the slightly faster adjustment of employment. This indicates that

if productivity is at its normal value but employment is not, 68 percent of the deviation of

employment from steady state is wiped out within a month. This finding of fast employment

adjustment dynamics is endemic to the search and matching literature. A number of papers

have modified the model in an effort to explain why the unemployment rate is in fact quite

persistent (Hall, 1995; Cole and Rogerson, 1999; Pries, 2004), but I do not pursue that route
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in this book.

Next I compute the unconditional variance and covariance of the state variables, Σ ≡
E(mm′). Since this is an unconditional variance-covariance matrix, the expected value of

m+1m
′
+1 is also Σ. Then using m+1 = Am+Dυ+1, I obtain

Σ = E
(

m+1m
′
+1

)

= E
(

(Am+Dυ+1)(m
′A′ + υ′+1D

′)
)

= AΣA′ +DD′,

where the last equality uses the fact that υ+1 is a shock and hence orthogonal to m,

E(mυ′+1) = E(υm′
+1) = 0, and has unit variance, E(υ+1υ

′
+1) = 1. This equation is eas-

ily solved numerically for Σ:

Σ =

(

1.1905 −0.0072

−0.0072 0.0003

)

ς2.

In particular, the unconditional standard deviation of employment is
√

0.0003ς = 0.00006, a

tiny number.

With a larger value of the complementarity parameter, σ = 4, the response of employment

is bigger but still quantitatively unimpressive. The policy function becomes

log θ = −2.557 − 2.297(s− 0.0012) + 1.884(logn− log 0.95),

and the state equation is

logn+1 = log 0.95 − 0.039(s− 0.0012) + 0.352(logn− log 0.95).

Now the unconditional standard deviation of employment is 4.8 percent as large as the

unconditional standard deviation of monthly productivity growth. While this is about three

times larger than before, it is still a tiny number and it relies on an implausibly strong

complementarity between consumption and leisure.

Finally, I can compute the labor wedge. Imagine an economist who ignores the existence of

labor market frictions and so measures the wedge between the marginal rate of substitution

of consumption for leisure and the marginal product of labor using equation (1.14). He

estimates the disutility of leisure γ̂ so as to imply an average labor wedge of τ̂ = 0.4, sets the

capital share of income at α = 0, and recognizes that the Frisch elasticity of labor supply is

ε = ∞ and the parameter governing the substitutability of consumption and leisure to σ = 2.

Then using employment data, with the employment rate averaging n̄ = 0.95, he measures
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the labor wedge in period t as

τ̂ (st) = 1 − γ̂σn(st)

1 + (σ − 1)γ̂n(st)
, (3.30)

so the average labor wedge satisfies

τ̂ = 1 − γ̂σn̄

1 + (σ − 1)γ̂n̄
.

He would solve this equation for the disutility of work and conclude γ̂ = 0.451, higher than

the true value of γ = 0.399. This is because he fails to realize that workers are unemployed

not only because they have a taste for leisure but also because of the search frictions.

The economist would also uncover movements in the labor wedge that are negatively

correlated with the employment rate, as in the data. However, the size of these move-

ments would be small. To see this, log-linearize τ̂ around the stochastic steady state. From

equation (3.30),

log τ̂ = log 0.4 − 1.050(logn− log 0.95).

The economist would conclude that whenever employment is above its normal level, the labor

wedge is roughly the same proportion below its normal level. This is broadly consistent with

the evidence in Table 1.1 when the elasticity of labor supply is infinite. Still, the fact that the

model yields only very small movements in the employment rate implies that it yields equally

small movements in the labor wedge, both inconsistent with the data. I conclude that the

search model with substitutability between consumption and leisure is a quantitative failure

at explaining the behavior of the employment rate and the labor wedge.

3.2 Capital

I now reintroduce productive capital—and shocks to the production technology of the capital

good—into the model. In the benchmark search model in Chapter 2, the economy can smooth

shocks to the production technology only by changing the allocation of workers between

recruiting and production. Since the productivity of the recruiting technology is constant,

a temporary improvement in the efficiency of the production technology induces offsetting

effects: on the one hand, it is a good time to produce rather than recruit; on the other hand,

the marginal utility of consumption is low, encouraging firms to defer production. With the

preferences in equation (2.32), these effects cancel and so recruiting is acyclic. With the more

general preferences in equation (3.1), they do not quite cancel, but I found recruiting was

still nearly constant.
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Capital accumulation, like recruiting, is an investment. The key difference between the

two types of investment is that it is reasonable to assume that shocks to the technology for

producing the consumption good do not affect the efficiency of the recruiting technology;

however, many shocks that improve the efficiency of producing the consumption good are

likely to also improve the efficiency of producing the investment good. This implies that when

the productivity is high, it is a good time to produce investment goods. This endogenous

propagation mechanism has been well-understood since the advent of the real business cycle

model (Kydland and Prescott, 1982), but is neglected in any business cycle model without

capital.

3.2.1 Households

The household’s problem is unchanged from Section 2.2, i.e. the case with logarithmic utility

over consumption and separability between consumption and leisure. From this problem, I

again obtain three key results: the Euler equation,

qt(s
t+1) = β

Π(st+1)c(st)

Π(st)c(st+1)
; (3.31)

the marginal value of an employed household member,

Vn(s
t, a(st), n(st)) =

(1 − τ)w(st)

c(st)
− γ

+ β(1 − x− f(θ(st)))
∑

st+1|st

Π(st+1)

Π(st)
Vn(st+1, a(st+1), n(st+1)); (3.32)

and the marginal value of having a worker employed in a job that pays an arbitrary wage w

in history st and the equilibrium wage thereafter,

Ṽn(st, w) =
(1 − τ)(w − w(st))

c(st)
+ Vn(st, a(st), n(st)). (3.33)

I omit the derivation of these results because they do not depend on whether there is capital

in the economy; see Section 2.2.2 for details.

3.2.2 Firms

I start by describing the firm’s problem verbally. A representative firm employs n0 = n(s0)

workers and owns capital k0 = k(s0) at time 0. In history st, it assigns a fraction ν(st) of its

n(st) workers to recruiting and the remaining n(st)(1 − ν(st)) workers to production. The
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producers use the capital k(st) to generate z(st)k(st)α
(

n(st)(1 − ν(st))
)1−α

of a single good

that is used both for consumption and for investment. A fraction δ of the capital depreciates

during production. The recruiters each attract µ(θ(st)) workers to the firm, while a fraction

x of the workers leave the firm, thus determining n(st+1). Finally, the firm can freely buy

or sell capital in history st, determining k(st+1). Because there is a single technology for

producing the capital and consumption good, the relative price of the capital good is always

equal to 1.

More formally, the present value of the firm’s profits are

J(s0, n0, k0) =

∞
∑

t=0

∑

st

q0(s
t)
(

z(st)k(st)α
(

n(st)(1 − ν(st))
)1−α

+ (1 − δ)k(st) − k(st+1) − w(st)n(st)
)

, (3.34)

where firm growth satisfies

n(st+1) = n(st)
(

ν(st)µ(θ(st)) + 1 − x
)

. (3.35)

This extends equation (1.4) to recognize that in the search and matching model, the level

of employment is a state variable in the firm’s problem. Note that k(st+1) and n(st+1), the

capital stock and total workforce in history st+1, are determined in the prior history st. This

implies that k({st, st+1}) = k({st, s′t+1}) and n({st, st+1}) = n({st, s′t+1}) for all st, st+1, and

s′t+1.

To characterize the firm’s behavior, let J(st, n, k) denote the value of a firm that starts

history st with n workers and k units of capital. This is homogeneous of degree 1 jointly in

n and k because a firm with twice as many workers and twice as much capital can produce

twice as much, invest twice as much, and hire twice as much at all future dates, yielding

twice as much profits. Moreover, J solves the recursive equation

J(st, n, k) = max
ν,k′

(

z(st)kα
(

n(1 − ν)
)1−α

+ (1 − δ)k − k′ − nw(st)

+
∑

st+1|st

qt(s
t+1)J

(

st+1, n
(

νµ(θ(st)) + 1 − x
)

, k′
)

)

. (3.36)

In each period, the firm chooses the fraction of its workforce that are recruiters and its capital

stock next period in order to maximize current revenue net of investment costs and labor

costs plus the expected continuation value of the firm.
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Assuming an interior solution for the share of recruiters ν, I obtain the first order condition

(1 − α)z(st)

(

k(st)

n(st)(1 − ν(st))

)α

= µ(θ(st))
∑

st+1|st

qt(s
t+1)Jn

(

st+1, n(st+1), k(st+1)
)

. (3.37)

The left hand side is the marginal product of a producer. The right hand side is the expected

value of the additional workers attracted by a recruiter. Also write the envelope condition

for employment as

Jn(s
t, n(st), k(st)) = (1 − α)z(st)

(

k(st)

n(st)(1 − ν(st))

)α

(1 − ν(st)) − w(st)

+
(

ν(st)µ(θ(st)) + 1 − x
)

∑

st+1|st

qt(s
t+1)Jn

(

st+1, n(st+1), k(st+1)
)

.

Eliminate the continuation value using equation (3.37) to obtain

Jn(st, n(st), k(st)) = (1 − α)z(st)

(

k(st)

n(st)(1 − ν(st))

)α(

1 +
1 − x

µ(θ(st))

)

− w(st). (3.38)

This extends equation (2.30) to an environment where the marginal product of labor depends

on the capital-producer ratio. As before, the term 1+(1−x)/µ(θ(st)) recognizes that when a

firm employs an additional worker, this raises current output directly and also raises output

because the firm can afford to move workers from recruiting to production this period, while

keeping the same size next period.

Next turn to the first order condition for next period’s capital stock. From equation (3.36),

1 =
∑

st+1|st

qt(s
t+1)Jk

(

st+1, n(st+1), k(st+1)
)

.

Purchasing a unit of capital reduces current profit by 1. This must equal the increase in the

continuation value of the firm. The envelope condition for capital is

Jk(s
t, n(st), k(st)) = αz(st)

(

k(st)

n(st)(1 − ν(st))

)α−1

+ 1 − δ.

Evaluate this in history st+1 and substitute into the first order condition for next period’s

capital to get

1 =
∑

st+1|st

qt(s
t+1)

(

αz(st+1)

(

k(st+1)

n(st+1)(1 − ν(st+1))

)α−1

+ 1 − δ

)

. (3.39)
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Firms are willing to invest in capital if the cost of capital this period is equal to the expected

net marginal product of capital next period, including the value of reselling the undepreciated

portion of the capital.

Finally, compute the marginal profit of employing a worker at an arbitrary wage w in

history st and the equilibrium wage thereafter, rather than losing the worker. For a firm with

the equilibrium level of employment n(st) and capital k(st), this is

J̃n(st, w) = w(st) − w + Jn(st, n(st), k(st)). (3.40)

This is essentially unchanged from equation (2.31).

3.2.3 Wages

The Nash bargaining solution states that the wage maximizes the Nash product

Ṽn(st, w)φJ̃n(st, w)1−φ. (3.41)

Replace J̃n(st, w) using equation (3.40) and Ṽn(st, w) using equation (3.33). The first order

necessary and sufficient condition for a maximum of the Nash product is

(1 − φ)Vn

(

st, a(st), n(st)
)

c(st) = φ(1 − τ)Jn(st, n(st), k(st)). (3.42)

Use this to eliminate Vn(st, a(st), n(st)) and Vn(st+1, a(st+1), n(st+1)) from equation (3.32):

φ(1 − τ)Jn(st, n(st), k(st)) = (1 − φ)(1 − τ)w(st) − (1 − φ)γc(st)

+ φ(1 − τ)(1 − x− f(θ(st)))
∑

st+1|st

qt(s
t+1)Jn(st+1, n(st), k(st+1)).

Replace Jn(st, n(st), k(st)) using equation (3.38) and
∑

st+1|st qt(s
t+1)Jn(st+1, n(st+1), k(st+1))

using equation (3.37), giving the wage equation

(1 − τ)w(st) = φ(1 − τ)(1 − α)z(st)

(

k(st)

n(st)(1 − ν(st))

)α

(1 + θ(st)) + (1 − φ)γc(st), (3.43)

a natural generalization of equation (2.43). The after-tax wage is a weighted average of

two terms: the after-tax marginal product of labor both of this worker and of the workers

released from recruiting by her employment; and the marginal rate of substitution between

consumption and leisure.
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3.2.4 Equilibrium

I assume the government levies labor taxes and rebates the proceeds lump-sum to households

in every period. For notational simplicity, I impose a balanced budget,

T (st) = τw(st)n(st). (3.44)

Ricardian equivalence holds in this environment, so alternative assumptions on government

debt would not affect the equilibrium allocations.

I then close the model with a set of market clearing conditions. The economy’s resource

constraint implies that next period’s capital stock is

k(st+1) = z(st)k(st)α
(

n(st)(1 − ν(st))
)1−α

+ (1 − δ)k(st) − c(st). (3.45)

Next period’s employment is determined from current employment and current recruiting,

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)). (3.46)

And the recruiter-unemployment ratio θ satisfies

θ(st) =
ν(st)n(st)

1 − n(st)
. (3.47)

The definition of equilibrium is now standard and so I omit it.

3.2.5 Balanced Growth

Suppose there is deterministic Hicks-neutral productivity growth at rate s̄, log z(st+1) =

log z(st) + s̄. I claim that there is an equilibrium where consumption, capital, and wages

grow at rate s̄/(1 − α), while employment, the ratio of recruiters to unemployed, and the

share of recruiters in employment are constant. That is, c(st) = c̄z(st)
1

1−α , k(st) = k̄z(st)
1

1−α ,

w(st) = w̄z(st)
1

1−α , n(st) = n̄, θ(st) = θ̄, and ν(st) = ν̄. This result is useful both for

understanding how the economy works and also later for characterizing stochastic deviations

from the balanced growth path due to technology shocks.

To prove this claim, I assume that there is such an equilibrium and show how to solve for

the unknown constants. Eliminate the intertemporal price qt(s
t+1) from equation (3.39) using

equation (3.31) and eliminate the share of recruiters ν(st) and ν(st+1) using equation (3.47).
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This gives

1 = βe
−s̄
1−α

(

α

(

k̄

n̄− θ̄(1 − n̄)

)α−1

+ 1 − δ

)

. (3.48)

Then eliminate Jn(st+1, n(st+1), k(st+1)) from equation (3.37) using equation (3.38) evaluated

in history st+1. Again eliminate q and ν using equations (3.31) and (3.47):

w̄ = (1 − α)

(

k̄

n̄− θ̄(1 − n̄)

)α(

1 − 1 − β(1 − x)

βµ(θ̄)

)

. (3.49)

The wage equation (3.43) and equation (3.47) imply

(1 − τ)w̄ = φ(1 − τ)(1 − α)

(

k̄

n̄− θ̄(1 − n̄)

)α

(1 + θ̄) + (1 − φ)γc̄. (3.50)

Finally, the resource constraint equation (3.45) and the law of motion for employment in

equation (3.46) each simplify slightly:

e
s̄

1−α k̄ = k̄α
(

n̄− θ̄(1 − n̄)
)1−α

+ (1 − δ)k̄ − c̄ (3.51)

and

n̄ =
f(θ̄)

x+ f(θ̄)
. (3.52)

The preceding five equations, equations (3.48)–(3.52), have five unknowns, the wage con-

stant w̄, the capital constant k̄, the consumption constant c̄, employment n̄, and the recruiter-

unemployment ratio θ̄. It is possible to reduce them to an implicit equation for θ̄. Eliminate

w̄ between equations (3.49) and (3.50), then eliminate k̄ using equation (3.48), next c̄ using

equation (3.51), and finally eliminate n̄ using equation (3.52). This algebra yields T (θ̄) = 0,

where

T (θ) ≡ (1 − τ)(1 − α)

(

1 − 1 − β(1 − x)

βµ(θ)
− φ(1 + θ)

)

− (1 − φ)γ

(

(1 − αβ)e
s̄

1−α − (1 − α)β(1 − δ)

e
s̄

1−α − β(1 − δ)

)

(

f(θ) − θx

f(θ) + x

)

.

Observe that T is continuous. When θ = 0, T (0) = (1− τ)(1−α)(1−φ) > 0. Also let θ̃ > 0

solve f(θ̃) = θ̃x, so µ(θ̃) = x. Evaluating gives T (θ̃) = −(1−τ)(1−α)
(

1−β
βx

+φ(1+θ̃)
)

< 0. By

the intermediate value theorem, there is a solution to T (θ) = 0, an equilibrium, in between

these two points.

Once I obtain θ̄, it is straightforward to compute the value of the other variables of
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interest along a balanced growth path. Note that since both capital and employment are state

variables, the economy is on a balanced growth path only with particular initial conditions

for the capital stock and employment. I defer an analysis of the stability of the system, i.e.

whether it converges to the balanced growth path from nearby initial conditions, until after

I discuss the full model with a productivity shock.

3.2.6 Productivity Shocks: Deterministic Trend

Suppose log z(st) = s̄t + st where st follows a stationary first order Markov process with

mean 0. Thus s̄ is the deterministic growth rate while st represents a transitory deviation

from trend. Let π(st+1|st) ≡ Π(st+1)/Π(st) denote the probability of state st+1 next period

conditional on state st this period, where st ≡ {st−1, st} and st+1 ≡ {st, st+1}. This nests the

balanced growth path as a special case with st = 0 for all t.

Stationary Equilibrium

Inspired by the balanced growth path, I define consumption, capital, and wages relative

to trend productivity as c̃(st) ≡ c(st)e−
s̄t

1−α , k̃(st) ≡ k(st)e−
s̄t

1−α , and w̃(st) ≡ w(st)e−
s̄t

1−α .

Along a balanced growth path, I found that c̃(st), k̃(st), and w̃(st) are constant. I look

for an equilibrium of the stochastic growth model where they are stationary. Similarly, since

employment, the share of recruiters in employment, and the ratio of recruiters to unemployed

are all constant along a balanced growth path, I look for an equilibrium of the stochastic

growth model where these variables are stationary.

To proceed, I look for a stationary system of equations in these new variables. Use

equation (3.31) to eliminate the intertemporal price q from the condition for an interior

solution for capital, equation (3.39), and then use equation (3.47) to eliminate the share of

recruiters in employment ν:

e
s̄

1−α = β
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)



αest+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α−1

+ 1 − δ



 .

(3.53)

Similarly eliminate Jn(st+1, n(st+1), k(st+1)) from the condition for an interior solution for

recruiting, equation (3.37), using the envelope condition for employment, equation (3.38),



3.2. CAPITAL 87

evaluated in history st+1. Then eliminate q and ν using equations (3.31) and (3.47):

(1 − α)est

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

= βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)
(

(1 − α)est+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 +
1 − x

µ(θ(st+1))

)

− w̃(st+1)

)

. (3.54)

Next use equation (3.47) to rewrite the wage equation (3.43), evaluated in history st+1, as

(1 − τ)w̃(st+1) = (1 − φ)γc̃(st+1)

+ φ(1 − τ)(1 − α)est+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α

(1 + θ(st+1)). (3.55)

Again using equation (3.47), the resource constraint equation (3.45) becomes

k̃(st+1)e
s̄

1−α = estk̃(st)α
(

n(st) − θ(st)(1 − n(st))
)1−α

+ (1 − δ)k̃(st) − c̃(st). (3.56)

Equation (3.46) is unaffected by this notation.

Equations (3.46) and (3.53)–(3.56) describe a stationary set of relationships between the

variables of interest and so may in fact admit a stationary solution. I look for a solution with

the property that the policy variables θ(st) and c̃(st) depend on the exogenous state st, on

employment n, and on the capital stock relative to trend k̃. Using the Markov property of

the state variable and equations (3.46) and (3.56), this implies that st+1, n(st+1), and k̃(st+1)

depend on the same objects. To characterize such a solution, eliminate w̃(st+1) between

equations (3.54) and (3.55):

(1 − α)est

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

= βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

(

− (1 − φ)γc̃(st+1)

1 − τ

+ (1 − α)est+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 − x

µ(θ(st+1))
+ 1 − φ− φθ(st+1)

)

)

.

(3.57)

Now let the functions Θ and C denote the equilibrium recruiter-unemployment ratio and equi-

librium consumption as functions of the current state (s, n, k̃), so θ(st) = Θ(st, n(st), k̃(st))
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parameter value
discount factor β 0.996

mean productivity growth s̄ 0.0012
tax rate τ 0.4

employment exit probability x 0.034
matching function f(θ) 2.32θ1/2

workers’ bargaining power φ 0.5
disutility of work γ 0.471

capital share α 0.33
depreciation rate δ 0.0028

autocorrelation of detrended productivity ρ 0.98
standard deviation of detrended productivity ς 0.005

Table 3.2: Calibrated parameter values in model with capital, deterministic trend.

and c̃(st) = C(st, n(st), k̃(st)). After substituting these functions into equations (3.53)

and (3.57), eliminate k̃(st+1) using equation (3.56) and n(st+1) using equation (3.46) to

obtain a pair of nonlinear equations that implicitly define Θ and C.

Calibration

As in Section 3.1, I solve the model by log-linearizing around a stochastic steady state. I

assume that the deviation of productivity from trend follows a linear process,

st+1 = ρst + ςυt+1, (3.58)

where υ is a white noise innovation with mean 0 and standard deviation 1 and so ς is the

standard deviation of the productivity shock, while ρ ∈ (0, 1) is its autocorrelation. I then

look for a log-linear approximation to the policy functions,

log θ = log θ̄ + θss + θn(log n− log n̄) + θk(log k̃ − log k̄), (3.59)

log c̃ = log c̄+ css+ cn(logn− log n̄) + ck(log k̃ − log k̄). (3.60)

In these equations, θ̄ is the recruiter-unemployment ratio, c̄ is consumption relative to pro-

ductivity, n̄ is employment, and k̄ is capital relative to productivity in the stochastic steady

state. The remaining six parameters represent the elasticity of the two policy functions with

respect to the three state variables.

The introduction of capital changes neither the strategy for calibrating most of the pa-

rameters nor the results, and so I keep their values fixed at those I used in the model with

consumption-labor complementarity. Of course, moving from a stochastic to a deterministic
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trend changes the productivity process. I continue to assume that mean productivity growth

is s̄ = 0.0012 and set the autocorrelation of productivity growth to ρ = 0.98 and the stan-

dard deviation to ς = 0.005. These values are similar to standard calibrations of total factor

productivity (Cooley and Prescott, 1995), with an adjustment to account for the fact that

time periods are one month long.

Since the model now assumes consumption and leisure are additively separable, I change

the disutility of work so as to keep the average employment rate fixed at 0.95. This requires

setting γ = 0.471.

The model with capital has two new parameters, the capital share α and the monthly

depreciation rate δ. I fix α = 0.33 to match the capital share of income in the National Income

and Product Accounts. I set δ = 0.0028 per month, which pins down the capital-output ratio

in the stochastic steady state. To see how, rewrite equation (3.48) along a balanced growth

path as

1 = βe
−s̄
1−α

(

α
ȳ

k̄
+ 1 − δ

)

,

where y(st) ≡ z(st)k(st)α(n(st)− θ(st)(1− n(st)))1−α is gross output and ȳ ≡ y(st)z(st)−
1

1−α

is output relative to trend. Then this choice of parameter values implies that the ratio of

capital to monthly output, k̄/ȳ, is 38.3. Equivalently, the ratio of capital to annual output

is 3.2, the average capital-output ratio in the United States since 1948.6 The remaining

parameters are unchanged; I show their values in Table 3.2 for convenience.

This leaves nine unknowns in equations (3.59) and (3.60): the recruiter-unemployment

ratio θ̄, consumption relative to productivity c̄, and capital relative to productivity k̄ in the

stochastic steady state, and the six elasticities of the policy functions with respect to the

state variables. In addition, I effectively treat the value of leisure γ as a residual, a tenth

unknown variable. I pin these down using ten equations. As described above, I substitute

the log-linear approximations θ(st) = Θ(st, n(st), k̃(st)) and c(st) = C(st, n(st), k̃(st)) into

equations (3.53) and (3.57), and then eliminate k̃(st+1) using equation (3.56) and n(st+1)

using equation (3.46). This gives two equations, which I log-linearize around the steady

state {s, n, k} = {0, n̄, k̄}. The resulting system yields eight equations. The two remaining

equations come from steady state versions of the state equations (3.46) and (3.56):

n̄ = (1 − x)n̄ + f(θ̄)(1 − n̄)

k̄e
s̄

1−α = k̄α
(

n̄− θ̄(1 − n̄)
)1−α

+ (1 − δ)k̄ − c̄.

6More precisely, I use the Bureau of Economic Analysis’s Fixed Asset Table 1.1, line 1 to measure the
current cost net stock of fixed assets and consumer durable goods. I use National Income and Product
Accounts Table 1.1.5, line 1 to measure nominal Gross Domestic Product.
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I solve these ten equations numerically.

Solution

I find that the policy functions are

log θ = log 0.078 + 7.387s− 0.480(logn− log 0.95) − 2.779(log k̃ − log 218.2), (3.61)

log c̃ = log 4.696 + 0.250s+ 0.014(logn− log 0.95) + 0.603(log k̃ − log 218.2),

where 0.078 is the recruiter-unemployment ratio, 0.95 is the employment rate, 218.2 is capital

relative to trend, and 4.696 is consumption relative to trend, all in the stochastic steady state.

When productivity is above trend, the recruiter-unemployment ratio and consumption

both increase. The increase in the recruiter-unemployment ratio raises next period’s em-

ployment rate. Since the elasticity of consumption with respect to current productivity is

less than 1, physical capital investment also rises with productivity. Thus both endogenous

state variables increase with current productivity. I confirm this by looking at the implied

log-linear approximation to the state equations (3.46) and (3.56):

log n+1 = log 0.95 + 0.126s+ 0.312(logn− log 0.95) − 0.047(log k̃ − log 218.2), (3.62)

log k̃+1 = log 218.2 + 0.020s+ 0.019(logn− log 0.95) + 0.991(log k̃ − log 218.2).

To understand these dynamics, focus on households’ desire to maintain smooth consumption.

Following a positive productivity shock, households would like to save more. This pushes

down the interest rate (raises qt(s
t+1)), which encourages firms to invest both in capital and in

recruiting workers. The increase in employment raises the marginal product of capital, which

encourages more investment, and also enables firms to devote more resources to recruiting.

Eventually, however, the wealth effect from the increase in the capital stock raises wages,

which puts downward pressure on recruiting. This reduces employment and returns the

economy to steady state.

To examine these dynamics more systematically, express the log-linear approximation to

the model’s dynamics as m+1 = Am+Dυ+1 where m = {s, logn− log n̄, log k̃− log k̄} is the

state of the system, A is the transition matrix

A =







0.980 0 0

0.126 0.312 −0.047

0.020 0.019 0.991






,
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and D translates the univariate white noise shock υ into next period’s state

D =







ς

0

0






.

The eigenvalues of A are 0.99, 0.98, and 0.31, and so the system is locally stable. The largest

eigenvalue, 0.99, reflects the slow adjustment of the capital stock to steady state due to the

low depreciation rate. The second eigenvalue is equal to the persistence of the productivity

shock. The smallest is associated with the rapid adjustment of employment to steady state.

Next I compute the unconditional variance and covariance of the state variables. As I

discussed in Section 3.1, this is determined by Σ solving Σ = AΣA′ +DD′. I obtain

Σ =







25.253 3.175 19.505

3.175 0.560 0.469

19.505 0.469 46.550






ς2.

This confirms that deviations of productivity from trend are positively correlated with devi-

ations of both employment and capital from trend. However, the volatility of employment

is still small, with an unconditional standard deviation equal to
√

0.560ς = 0.004. Put

differently, suppose that productivity suddenly increases to st = 0.01, approximately four

standard deviations above trend, and gets stuck there. The unemployment rate will quickly

but modestly decline from its steady state value of 5.00 percent to 4.83 percent. Moreover,

the capital stock will start to increase and this wealth effect will partially reverse the change

in unemployment. Asymptotically, the unemployment rate will rise back to 4.98 percent,

scarcely different from where it started.

Labor Wedge

A particularly useful way to understand the stability of employment is to look at the labor

wedge. Once again, suppose an economist ignores the existence of labor market frictions and

so measures the wedge between the marginal rate of substitution and the marginal product

of labor using equation (1.12). He recognizes that the capital share of income is α = 0.33 and

the Frisch labor supply elasticity is infinite since labor is indivisible. Then he would measure

τ̂(st) = 1 − γ̂

1 − α

(

c(st)/y(st)
)

n(st).
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Using evidence from the stochastic steady state, he would conclude that if the true tax factor

is 0.4, the disutility of work is γ̂ = 0.513. Again, this is slightly higher than the true value

γ = 0.471, since our economist does not understand that unemployment is governed by search

frictions.

He could also measure the cyclical dynamics of the labor wedge τ̂ . To see how this would

be done using model-generated data, note that both n(st) and c(st)/y(st) are stationary, the

latter because c(st)/y(st) = c̃(st)/ỹ(st), where

ỹ(st) ≡ y(st)e−
s̄t

1−α = est k̃(st)α
(

n(st)(1 − ν(st))
)1−α

is detrended output. I can therefore log-linearize the labor wedge around its steady state

value to obtain

log τ̂ = log 0.4 + 1.095s− 0.431(logn− log 0.95) − 0.398(log k̃ − log 218.2).

The measured labor wedge is low when productivity is below trend, employment is above

trend, or the capital stock is above trend. When productivity is below trend, the desire

to maintain smooth consumption keeps the consumption-output ratio high, which lowers

the measured labor wedge. High capital also raises the consumption-output ratio due to

its wealth effect, and so has the same implication. High employment directly reduces the

measured labor wedge.

Finally, the economist might look at the comovement between the labor wedge and the

state variables in the economy. In general, consider any set of variables m̃ that are linear

functions of the state variables m, say m̃ = Ãm for some matrix Ã. Then the variance-

covariance matrix of these variables satisfies E(m̃m̃′) = E(Ãmm′Ã′) = ÃΣÃ′, where I simplify

this using the definition of the variance-covariance matrix Σ = E(mm′). Critically, he would

find that the correlation between the detrended measured labor wedge τ̂ and detrended

employment is 0.96. In the data, the correlation is sharply negative; see for example Table 1.1,

which shows that the correlation is always larger in magnitude than −0.6. He would also

find a strong negative correlation between the labor wedge and the consumption-output ratio,

while in the data the correlation is much weaker and sometimes even switches signs.7

It is easy to understand why the model generates a positive correlation between the

7Throughout this book, I focus on the infinite-sample properties of model-generated data. One has to be
cautious in comparing these results with a finite sample of real-world data. An alternative approach would
be to simulate the model to generate a finite number of observations. Using Monte Carlo methods, one can
create multiple samples and ask whether the observed real-world data is likely to have been generated by the
model. I do follow this approach here, but I do not expect that this would have a significant impact on my
findings.
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 0.717 4.391 0.990 0.109 0.012 0.515 0.614 0.729

ỹ 1 0.871 0.714 0.748 0.713 -0.886 -0.729 0.728 0.971

c̃ — 1 0.279 0.978 0.293 -0.563 -0.299 0.298 0.729

θ — — 1 0.070 0.966 -0.938 -0.999 1.000 0.860

k̃ — — — 1 0.092 -0.379 -0.091 0.090 0.569

Correlations n — — — — 1.000 -0.877 -0.976 0.962 0.844

wn/y — — — — — 1 0.938 -0.947 -0.967

c/y — — — — — — 1 -0.998 -0.870

τ̂ — — — — — — — 1 0.870

s — — — — — — — — 1

Table 3.3: Model with capital, deterministic trend. Co-movements of variables in an infinite
sample.

measured labor wedge and employment. Search frictions act like an adjustment cost on

labor. Our economist ignores the existence of that adjustment cost and so expects to see

relatively large movements in employment in response to the observed shocks. When he does

not, he interprets this, through the lens of the competitive model from Chapter 1, as evidence

that the labor wedge rises during expansions, discouraging households from supplying much

more labor, and falls during recessions, encouraging households not to contract their labor

supply too much. But the failure of the frictionless model occurred because in the data

employment fluctuates too much, not too little. An adjustment cost is unlikely to explain

this observation.

Comovements: Detrended Variables

Although I focus on the comovement of employment and the labor wedge, the model has

predictions along many other dimensions. Table 3.3 shows the co-movement of some key

economic outcomes. Table A.1 in Appendix A shows comparable numbers constructed from

historical United States data. The first row shows the ratio of the standard deviation of

a detrended variable to the standard deviation of detrended output, ỹ(st). I look at con-

sumption, the recruiter-unemployment ratio, capital, employment, the labor share (wn/y),

the consumption-output ratio, and the measured labor wedge. For example, the standard

deviation of log consumption relative to trend is 0.72 times the standard deviation of log

output relative to trend, so consumption is less volatile than output. This reflects the desire

to smooth consumption. The lower part of the table shows the contemporaneous correlation
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between different variables; the correlation between consumption and output is strongly pos-

itive, 0.87. Together this implies that when output is above trend, the consumption-output

ratio is low, which I verify in the seventh column.

Comovements: Growth Rates

One possible explanation for the gap between the model and data is that I do not measure

the same objects in the two environments. In the model, I measure the level of stationary

variables including employment, the recruiter-unemployment ratio, the consumption-output

ratio, and the labor wedge; and I measure the the ratio-to-trend of trending variables includ-

ing output, consumption, capital, and wages. In contrast, I cannot observe the trend in real

world data. Instead, I estimate the trend using a Hodrick-Prescott filter.

To understand whether this difference in measurement is an issue, I compute annual

growth rates for the various variables of interest in the model and compare this with the data

in the lower panel of Table 1.1. This has the added advantage that the annual growth rate of

trending variables—consumption, capital, output, and wages—is equal to the annual growth

rate of their detrended counterparts plus a constant, and so are easy to compute.

I start with some algebraic preliminaries. Again let m̃ = Ãm and now let m̃+i−m̃ denote

the i-period growth rate of m̃. Then this solves

m̃+i − m̃ = Ã(m+i −m).

Moveover, since m+1 = Am+Dυ+1, a simple induction argument implies

m+i = Aim+
i−1
∑

j=0

AjDυ+(i−j).

Combining these, I get

E(m̃+i − m̃)(m̃+i − m̃)′

= EÃ

(

(Ai − I)m+

i−1
∑

j=0

AjDυ+(i−j)

)(

(Ai − I)m+

i−1
∑

j=0

AjDυ+(i−j)

)′

Ã′,

where I is the identity matrix. Since υ is serially uncorrelated and υ+(i−j) is uncorrelated

with m for all i > j, this reduces to

E(m̃+i − m̃)(m̃+i − m̃)′ = Ã

(

(Ai − I)Σ(Ai − I)′ +
i−1
∑

j=0

AjDD′(Aj)′

)

Ã′,
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 0.303 6.552 0.300 0.158 0.019 0.756 0.921 0.900

ỹ 1 0.858 0.973 0.192 0.912 -0.931 -0.979 0.971 0.994

c̃ — 1 0.722 0.668 0.712 -0.706 -0.734 0.720 0.804

θ — — 1 -0.033 0.889 -0.968 -0.997 1.000 0.992

k̃ — — — 1 0.067 0.019 0.014 -0.034 0.094

Correlations n — — — — 1 -0.751 -0.920 0.876 0.897

wn/y — — — — — 1 0.948 -0.975 -0.961

c/y — — — — — — 1 -0.995 -0.992

τ̂ — — — — — — — 1 0.991

s — — — — — — — — 1

Table 3.4: Model with capital, deterministic trend. Co-movements of annual growth rates in
an infinite sample.

where as usual Σ = E(mm′). This covariance matrix is straightforward to calculate.

Using this approach, I compute the annual growth rates of the variables of interest and

show comovements in Table 3.4; Table A.2 in Appendix A shows comparable numbers con-

structed from historical United States data. The results that I emphasized in Table 3.3 are

unchanged. The correlation between the annual growth rate of the labor wedge and em-

ployment is 0.88, while the correlation with the consumption output ratio is −0.99. This is

inconsistent with the data, as shown in the bottom panel of Table 1.1. Moreover, none of the

other numbers change to an economically significant extent when moving from deviations

from trend to annual growth rates. For example, among the correlations, only the corre-

lation of the capital stock with four other variables changes signs. In three of those cases,

the correlation is economically insignificant, smaller than 0.1 in absolute value under either

measure.

Impulse Response Functions

Another way to summarize the results is through impulse responses. Suppose that produc-

tivity, employment, and capital are all at their stochastic steady state values in period −1.

In period 0, productivity jumps up by one standard deviation, or ς/
√

1 − ρ2 = 2.5 percent,

before reverting slowly back to steady state, with an autocorrelation of 0.98. The solid blue

dots in Figure 3.1 show how the economy responds. Consumption jumps up upon the impact

of the shock but soon starts to fall. Since workers would otherwise like to maintain smooth

consumption, the decline in consumption must be induced by a decline in the interest rate
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(a rise in qt(s
t+1)). This encourages firms both to recruit workers and to invest in capital,

leading to the increase in employment n and capital k̃. But with higher consumption and

a higher marginal product of labor, the wage increases (equation 3.43). This moderates the

incentive for firms to recruit more workers and eventually returns the economy to steady

state.

The figure also confirms that employment and hence unemployment is less volatile than

output. Following the shock, the unemployment rate falls rapidly from 5.0 to 4.6 percent

before reversing course, eventually rising slightly above its initial value. While this is an

improvement on the earlier search models in this book, the volatility of employment is still

modest.

One might expect that breaking the link between wages and the marginal product of labor

would help to generate fluctuations in employment, but in practice the labor share wn/y is

nearly constant. In the frictionless economy, the labor share is constant at 1 − α = 0.6700.

Search frictions reduce it very slightly, to 0.6697 in the stochastic steady state. Figure 3.1

shows that, upon the impact of a positive productivity shock, the labor share falls by by 0.08

percent, to 0.6692, and then recovers rapidly. In this sense, wages are almost exactly equal

to the marginal product of labor even in the presence of search frictions.

Sensitivity

I consider the sensitivity of these results along two dimensions. First, one might be concerned

that I have taken too small a departure from the frictionless model. In steady state, only 0.4

percent of employed workers are engaged in recruiting, while the remainder are producers.

In fact, intuition suggests that more severe search frictions will only dampen fluctuations in

employment, and simulations bear that out. I recalibrate the model with more severe search

frictions, µ̄ = 1, so recruiters can only contact 1.5 new workers per period in the stochastic

steady state. I also change the value of leisure so as to leave the steady state employment rate

unchanged. This modification raises the steady state share of employed workers in recruiting

to 2.2 percent, increasing the role of search frictions in labor market outcomes.

The solid red line in Figure 3.1 shows the resulting impulse response. More severe search

frictions moderate fluctuations in employment and the recruiter-unemployment ratio, but

otherwise have little effect on outcomes. Notably, the critical pattern, that high productivity

raises employment and the measured labor wedge, is unchanged. Conversely, I find that when

recruiting is more effective, so the model approaches the frictionless benchmark, employment

is more volatile.8 Search frictions alone do not help to explain the behavior of the measured

8The search model does not quite converge to the frictionless benchmark when µ̄ → ∞ because employment
is set a period in advance.
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Figure 3.1: Model with capital, deterministic trend. Response to a 2.5 percent increase in
productivity at t = 0. All variables are expressed as deviation from trend in log points. The
blue dots show µ̄ = 2.32 and the red lines show more frictions, µ̄ = 1.
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labor wedge.

Second, my choice of workers’ bargaining power, φ = 0.5, was arbitrary. Notably, in a

version of this model with linear utility and no capital, Hagedorn and Manovskii (2008) argue

for a lower bargaining power and a higher value of leisure. They find that this significantly

amplifies employment fluctuations. I confirm that their results carry over to this setting. At

one extreme, suppose we insist that the value of leisure is zero, γ = 0, so unemployment is

truly involuntary, caused only be the search frictions. Fixing all the other parameter, the

economy has five percent unemployment if workers’ bargaining power is very high, φ = 0.924.

With these parameters, the unconditional standard deviation of employment falls from 0.004

to 0.00002, so the model generates virtually no unemployment fluctuations.

At the other extreme, reduce workers’ bargaining power to φ = 0.05 and raise the value

of leisure to γ = 0.511, so as to maintain a five percent unemployment rate in the stochastic

steady state. For comparison, recall that in a frictionless economy, a value of leisure of

γ̂ = 0.513 results in the same nonemployment rate, while still higher values of leisure are

inconsistent with five percent unemployment. Thus this is nearly the highest possible value

for γ and the lowest possible value for φ. As expected, these changes raise the unconditional

standard deviation of employment by a factor of five, to 0.020. Moreover, they raise the

relative volatility of employment from 11 percent of output to 45 percent. While these

outcomes are promising, the behavior of the labor wedge is counterfactual. The correlation

between the labor wedge and employment is only slightly reduced, to 0.87 in levels and 0.68

in growth rates, far from the negative correlations that we observe in the data. Similarly, the

theoretical correlation between the labor wedge and the consumption-output ratio remains

strongly negative, −0.92 in levels and −0.81 in growth rates. It thus seems that the choice

of workers’ bargaining power does not drive my main finding, the counterfactual behavior of

the comovement of the labor wedge with employment and the consumption-output ratio.

3.2.7 Productivity Shocks: Stochastic Trend

I turn next to the possibility that there are shocks to the trend of productivity, rather

than transitory fluctuations around the trend. Assume log z(st+1) = log z(st) + st+1 where

st+1 = {st, st+1} and st follows a stationary first order Markov process. Let π(st+1|st) again

denote the probability of state st+1 next period conditional on state st this period. While

this change in the nature of the productivity shock alters many properties of the model, I

show in this section that it does not substantially affect the comovement of the labor wedge

with employment and the consumption-output ratio.

Again inspired by the balanced growth path, I look for an equilibrium where appro-

priately scaled versions of consumption, capital, and wages are stationary. Define rela-
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tive consumption, capital, and wages as c̃(st) ≡ c(st)z(st)
−1

1−α , k̃(st) ≡ k(st)z(st)
−1

1−α , and

w̃(st) ≡ w(st)z(st)
−1

1−α . Similarly, since employment, the share of recruiters in employment,

and the ratio of recruiters to unemployed are all constant along a balanced growth path, I

look for an equilibrium in which these variables are stationary.

To find a set of equilibrium conditions relating stationary variables, I eliminate the in-

tertemporal price q using equation (3.31) and the share of recruiters ν using equation (3.47)

from the remaining equilibrium conditions. Then the condition for an interior solution for

capital, equation (3.39), reduces to

1 = β
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)
e−

st+1

1−α



α

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α−1

+ 1 − δ



 .

(3.63)

Eliminating Jn(st+1, n(st+1), k(st+1)) from the condition for an interior solution for recruiting,

equation (3.37), using the envelope equation (3.38) for employment, evaluated in history st+1,

yields

(1 − α)

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

= βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

×
(

(1 − α)

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 +
1 − x

µ(θ(st+1))

)

− w̃(st+1)

)

.

The wage equation (3.43) evaluated in history st+1 reduces to

(1 − τ)w̃(st+1) = (1 − φ)γc̃(st+1)

+ φ(1 − τ)(1 − α)

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α

(1 + θ(st+1)).

Eliminating w̃(st+1) between the last two equations gives

(1 − α)

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

=

βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

(

− (1 − φ)γc̃(st+1)

1 − τ

+ (1 − α)

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 − x

µ(θ(st+1))
+ 1 − φ− φθ(st+1)

)

)

. (3.64)



100 CHAPTER 3. REAL EFFECTS OF PRODUCTIVITY SHOCKS

Finally, the resource constraint equation (3.45) becomes

k̃(st+1)e
st+1

1−α = k̃(st)α
(

n(st) − θ(st)(1 − n(st))
)1−α

+ (1 − δ)k̃(st) − c̃(st). (3.65)

Once again, equation (3.46) is unchanged.

As in the model with a deterministic trend, I look for a solution to equations (3.46)

and (3.63)–(3.65) with the property that the policy variables θ(st) and c̃(st) depend on the

exogenous state st, on employment n, and on the capital stock relative to trend k̃. Using the

Markov property of the state variable and the state equations (3.46) and (3.65), this implies

st+1, n(st+1), and k̃(st+1) depend on the same objects.

Again let the functions Θ and C denote the equilibrium recruiter-unemployment ratio

and equilibrium consumption relative to trend as functions of the current state (s, n, k̃), so

θ(st) = Θ(st, n(st), k̃(st)) and c̃(st) = C(st, n(st), k̃(st)). After substituting these functions

into equations (3.63) and (3.64), eliminate k̃(st+1) using equation (3.65) and n(st+1) using

equation (3.46) to obtain a pair of nonlinear equations that implicitly define Θ and C.

I solve the model by calibrating it and log-linearizing around a stochastic steady state. I

leave most of the calibration unchanged from the model with a deterministic trend (Table 3.2),

except the stochastic process for productivity, which I borrow from my earlier analysis of a

stochastic trend in the economy where consumption and leisure are substitutes. Thus I

assume that productivity growth follows a linear process, st+1 = s̄ + ρ(st − s̄) + ςυt+1. I

set average monthly productivity growth rate to s̄ = 0.0012, the autocorrelation of monthly

productivity growth to ρ = 0.4, and the standard deviation of monthly productivity growth

to ς = 0.00325. These values are consistent with the observed annual behavior of multifactor

productivity in the private business sector in the United States between 1948 and 2007.

I then solve for a log-linear approximation to the equilibrium policy functions, finding

log θ = log 0.078 + 1.548(s− 0.0012) − 0.480(logn− log 0.95) − 2.779(log k̃ − log 218.2),

log c̃ = log 4.696 + 0.381(s− 0.0012) + 0.014(logn− log 0.95) + 0.603(log k̃ − log 218.2).

An increase in the productivity growth raises the recruiter-unemployment ratio θ and in-

creases consumption c̃. Future productivity is expected to be much higher than current

productivity and households take advantage of that by increasing consumption immediately.

This puts upward pressure on interest rates (downward pressure on q), discouraging invest-

ment both in capital and recruiting. Still, because the shock is sufficiently transitory, the

interest rate response is modest and recruiting actually rises.9

9Note that the responses of the recruiter-unemployment ratio and consumption to employment and to
detrended capital are identical in the model with stochastic and deterministic trends, at least to the sixth
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 2.092 9.636 3.478 0.240 0.128 1.102 1.298 0.534

ỹ 1 0.995 -0.997 1.000 -0.999 0.013 0.981 -0.971 -0.067

c̃ — 1 -0.983 0.995 -0.996 0.115 0.996 -0.990 0.036

θ — — 1 -0.996 0.994 0.068 -0.962 0.948 0.147

k̃ — — — 1 -0.999 0.018 0.982 -0.972 -0.062

Correlations n — — — — 1 -0.034 -0.984 0.975 0.046

wn/y — — — — — 1 0.207 -0.253 0.997

c/y — — — — — — 1 -0.999 0.128

τ̂ — — — — — — — 1 -0.175

s — — — — — — — — 1

Table 3.5: Model with capital, stochastic trend. Co-movements of variables in an infinite
sample.

Using the equilibrium policy functions, I then find the log-linear approximation to the

state equations:

log n+1 = log 0.95 + 0.026(s− 0.0012) + 0.312(logn− log 0.95) − 0.047(log k̃ − log 218.2),

log k̃+1 = log 218.2 − 0.605(s− 0.0012) + 0.019(logn− log 0.95) + 0.991(log k̃ − log 218.2).

This confirms that higher productivity growth raises employment but reduces the detrended

capital stock by encouraging current consumption.

I next stack the state variables as m ≡ {s − s̄, logn − log n̄, log k̃ − log k̄}. I write

the transition equation as m+1 = Am+Dυ+1 and compute the eigenvalues of the transition

matrix A. The smallest and largest are unchanged at 0.99 and 0.31, corresponding to the slow

adjustment of capital and the fast adjustment of employment. The intermediate eigenvalue,

0.4, reflects the modest autocorrelation of shocks.

Finally, I construct other detrended variables as linear combinations of state variables,

m̃ = Ãm, and compute the variance-covariance matrix E(m̃m̃′) = ÃΣÃ′, where Σ = E(mm′)

solves Σ = AΣA′+DD′. Table 3.5 shows the relative standard deviations and the correlation

matrix for the same set of variables as was in Table 3.3.

Some results appear quite different and are superficially encouraging. For example,

the volatility of employment, n(st), relative to detrended output, ỹ(st) = y(st)z(st)
−1

1−α =

k̃(st)α
(

n(st)− θ(st)(1−n(st))
)1−α

, more than doubles from 0.11 to 0.24. On the other hand,

decimal point.



102 CHAPTER 3. REAL EFFECTS OF PRODUCTIVITY SHOCKS

ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 2.243 9.577 3.465 0.235 0.394 1.319 1.668 1.638

ỹ 1 0.956 -0.969 1.000 -0.988 0.120 0.867 -0.819 0.093

c̃ — 1 -0.854 0.961 -0.968 0.405 0.975 -0.951 0.380

θ — — 1 -0.965 0.942 0.130 -0.718 0.651 0.157

k̃ — — — 1 -0.992 0.136 0.876 -0.828 0.109

Correlations n — — — — 1 -0.189 -0.897 0.851 -0.163

wn/y — — — — — 1 0.597 -0.668 1.000

c/y — — — — — — 1 -0.996 0.575

τ̂ — — — — — — — 1 -0.647

s — — — — — — — — 1

Table 3.6: Model with capital, stochastic trend. Co-movements of annual growth rates in an
infinite sample.

the stochastic trend reverses the correlation between these variables, so employment is coun-

terfactually high when output is low relative to productivity. This is because an increase in

productivity growth leads to a jump up in consumption, which is partially accommodated

by moving workers from recruiting to production. In addition, recall that I measure output

relative to the level of productivity, i.e. ỹ, not y. I find that when productivity growth in-

creases, output rises but by less than productivity growth. Similar forces drive the negative

correlation between employment and capital relative to productivity.

Other results are more robust across models, especially the comovement of the variables I

am most interested in, employment, the consumption-output ratio, and the measured labor

wedge. The correlation between the labor wedge and employment rises from 0.96 to 0.97,

while the correlation between the labor wedge and the consumption output ratio remains

at −1.00. As I have noted before, both predictions are counterfactual. Still, from the

perspective of understanding the predictions of the model, it is reassuring that this finding

does not appear to depend on the specification of the stochastic process for productivity.

Table 3.6 computes the same statistics for the annual growth rates of various variables.

Computing growth rates rather than levels has a quantitatively significant impact on many

of the results. Still, the correlation of the labor wedge with employment remains strongly

positive, 0.88, and the correlation of the labor wedge with the consumption-output ratio

strongly negative, −1.00. Again these are inconsistent with the data in the bottom panel of

Table 1.1.

Figure 3.2 shows the impulse response to a one standard-deviation increase in the pro-
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ductivity growth rate s from s̄ = 0.0012 to s̄ + ς√
1−ρ2

= 0.0047 at t = 0. The cumulative

impact of this shock is to raise the level of productivity by about 0.6 percent. Since the

capital share is α = 0.33, this eventually raises output, consumption, and the capital stock

by about 1/(1 − α) times as much, 0.9 percent.

One advantage to looking at the impulse responses is that I can easily plot the behavior

of nonstationary variables. Indeed, Figure 3.2 shows the behavior of output y, rather than

detrended output ỹ, and similarly for the other nonstationary variables, consumption and

capital. I find that consumption jumps upon the impact of the shock, but by less than the

increase in output. During the subsequent adjustment, the consumption-output ratio falls

unusually low before returning to trend. During this intervening period, firms invest heavily

in physical capital, propagating the initial shock.

Following the shock, employment rises modestly for five months, peaking about 0.06 per-

cent above the initial level. In then gradually reverts to trend. This mirrors the pattern

of the consumption-output ratio, driving the strong negative correlation between these two

variables. Although the labor share responds slightly more in this model than with a deter-

ministic trend, the changes are still tiny. Upon the impact of the shock, it jumps up from

0.6697 to 0.6702 before returning gradually to its original value.

The bottom left panel in Figure 3.2 shows the behavior of the labor wedge and confirms

that it follows virtually the same pattern as employment. While the magnitude of fluctua-

tions in the labor wedge are significantly greater than the magnitude of the fluctuations in

employment, the comovement of the two variables is the opposite of what is in the data.

Once again, the intuition that search frictions act like a labor adjustment cost but other-

wise have little effect on the model is borne out. The solid red lines in Figure 3.2 show what

happens when search frictions are more severe, µ̄ = 1. This mainly muffles the response of

employment and the recruiter-unemployment ratio and slightly amplifies the impact on the

labor wedge.

Similarly, other calibrations of the model, e.g. with workers’ bargaining power at φ = 0.05

and the value of leisure at γ = 0.511, also have little impact on the key result. While this

substantially increases the volatility of employment, until it is 3.6 times as volatile as output

(3.5 times in growth rates), it does not reverse the positive correlation between the labor

wedge and employment (0.68 in levels, 0.45 in growth rates), nor the negative correlation

between the labor wedge and the consumption-output ratio (−0.80 in levels, −0.78 in growth

rates). Extreme calibrations of the model do not seem to overturn this relationship.
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Figure 3.2: Model with capital, stochastic trend. Response to an increase in the productivity
growth rate at t = 0. All variables are expressed as deviation from initial trend in log points,
except the productivity growth rate, which is measure in percentage points. The blue dots
show µ̄ = 2.32 and the red lines show more frictions, µ̄ = 1.



3.3. SHOCKS TO THE EMPLOYMENT EXIT PROBABILITY 105

3.2.8 Summary

In a search model with capital, productivity shocks affect employment, much as they do

in the frictionless real business cycle model. But while search frictions provide a notion of

unemployment that is absent from the frictionless model, they moderate rather than amplify

fluctuations in employment by acting as a labor adjustment cost. The positive comovement

between employment and the labor wedge appears to be a robust measure of the model’s

failure along this dimension. Since the frictionless model already has trouble explaining why

hours worked are so volatile and predicts no movement in the labor wedge, introducing search

frictions is at this point a step in the wrong direction.

3.3 Shocks to the Employment Exit Probability

3.3.1 Other Shocks

The search model with capital can easily be extended to allow for other shocks, many of

which are important in practice. For example, in reality, there are shocks both to the growth

rate and to the level of productivity. In reality, the government consumes real resources and

the amount of that spending fluctuates over time.10 Moreover, government spending may

vary in a systematic attempt to moderate the impact of shocks. In reality, the technology

for producing capital goods has improved more rapidly than the technology for produc-

ing consumption goods during the postwar period, resulting in a systematic decline in the

price of capital equipment (Krusell, Ohanian, Ŕıos-Rull, and Violante, 2000), but there are

fluctuations in the relative improvements in these two technologies, i.e. investment-specific

technology shocks (Fisher, 2006).

Since the methodology for introducing these additional shocks should by now be straight-

forward, I do not formally develop the models in this book. Still, the effects of these types

of shocks are predictable. Without search frictions, each would generate some fluctuations

in hours worked and the consumption-output ratio, but none would break the equivalence

between the marginal product of labor in the consumption goods sector and the tax-adjusted

marginal rate of substitution between consumption and leisure. In other words, the labor

wedge would be constant. Search frictions then dampen fluctuations in employment or hours

worked and so counterfactually cause a positive correlation between the labor wedge and em-

ployment and a negative correlation between the labor wedge and the consumption-output

ratio.

10For a recent attempt to identify government spending shocks, see Blanchard and Perotti (2002).
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3.3.2 Model

Shocks to the employment exit probability x deserve more serious consideration. Such shocks

have a direct impact on the employment and unemployment rates by affecting the flow of

workers from employment to unemployment. Although these shocks do not play any role in a

model without labor market frictions, since they can be costlessly reversed, many economists

believe that they are an important contributor to aggregate employment fluctuations. For

example, the research by Davis, Haltiwanger, and Schuh (1996) showed that the job de-

struction rate, measured as the net decline in employment at plants where employment is

contracting, is more volatile than the job creation rate, the net increase in employment at

plants where employment is expanding, at least in the United States manufacturing sector.

Given the close theoretical link between the job destruction rate and the employment exit

probability—the fraction of workers who are employed one month but not the next—many

economists have presumed that shocks to x, or endogenous fluctuations in x, must be critical

in a search model of the business cycle. More recent research using worker flow data has

confirmed that variation in the employment exit probability accounts for one-quarter to one-

half of the overall fluctuations in unemployment, while fluctuations in the job finding rate

f(θ(st)) account for the remaining portion.11

There are two basic approaches to introducing fluctuations in the employment exit prob-

ability into this model. The first is to generate the fluctuations endogenously. In Mortensen

and Pissarides (1994), employed workers are subject to idiosyncratic productivity shocks and

quit their job when the idiosyncratic shock is too bad. Shocks to aggregate productivity

change the endogenous threshold for exiting employment, a potentially important amplifica-

tion mechanism. The second, simpler, approach treats the employment exit probability as

an exogenous shock, possibly correlated with productivity, say x = x(st).

I follow the second approach here, allowing for correlated shocks to the deviation of

productivity from trend and the deviation of the employment exit probability from its normal

value.12 Formally, it is useful to think of the state st as a vector, st = {sz,t, sx,t}, where sz,t

determines the current deviation of productivity from trend, log z(st) = s̄t + sz,t, and sx,t

determines the deviation of the employment exit probability from its normal value, log x(st) =

log x̄ + sx,t. The innovations to the two state variables and their subsequent evolution may

be correlated.

This modification has little effect on the notion of equilibrium or the equations describing

it. Again define consumption relative to trend, c̃(st) ≡ c(st)e−
s̄t

1−α , capital relative to trend,

11The lower bound on the role of the employment exit probability comes from Shimer (2007b). The
upper bound is from Fujita and Ramey (forthcoming), while Elsby, Michaels, and Solon (2007) provide an
intermediate estimate.

12One can also solve the model with a stochastic trend in productivity.
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k̃(st) ≡ k(st)e−
s̄t

1−α , and wages relative to trend, w̃(st) ≡ w(st)e−
s̄t

1−α . I look for an equilibrium

where c̃(st), k̃(st), and w̃(st) are stationary, as are employment n(st), the share of recruiters

in employment ν(st), and the recruiter-unemployment ratio θ(st).

Following the same logic as in Section 3.2, an equilibrium is described by equations (3.53)

and (3.56) and a suitably modified version of equations (3.46) and (3.57). First, the employ-

ment rate evolves as

n(st+1) = (1 − x(st))n(st) + f(θ(st))(1 − n(st)). (3.66)

Second, the combination of the firm’s first order and envelope conditions and the wage

equation reduce to

(1 − α)esz,t

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

= βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

(

− (1 − φ)γc̃(st+1)

1 − τ

+ (1 − α)esz,t+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 − x(st+1)

µ(θ(st+1))
+ 1 − φ− φθ(st+1)

)

)

.

(3.67)

These last two equations replace the previously-constant employment exit probability with

its history-dependent counterpart.

3.3.3 No Productivity Shocks

As usual, I solve the model by log-linearizing around a stochastic steady state. To illustrate

the effect of shocks to the employment exit probability x(st), I first calibrate the model with

only that shock. That is, I assume productivity grows deterministically, log z(st) = s̄t and

so sz,t = 0 for all t. On the other hand, the deviation of the logarithm of the employment

exit probability from its average value, sx,t = log x(st) − log x̄, follows a linear process,

sx,t+1 = ρxsx,t + ςxυx,t+1, (3.68)
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where υx,t+1 is a white noise innovation with mean 0 and standard deviation 1. I look for a

log-linear approximation to the policy functions,

log θ = log θ̄ + θxsx + θn(log n− log n̄) + θk(log k̃ − log k̄),

log c̃ = log c̄ + cxsx + cn(log n− log n̄) + ck(log k̃ − log k̄).

Here θx is the elasticity of the recruiter-unemployment ratio with respect to the deviation of

the employment exit probability from trend and cx is the analogous elasticity of consumption.

Most of the calibration of the model is unchanged, but I need values for two new pa-

rameters, the autocorrelation and standard deviation of the shock to the employment exit

probability, ρx and ςx. I calibrate these using data on the monthly employment exit probabil-

ity; see Shimer (2007b) for details on the construction of this time series and the associated

series for the monthly job finding probability.13 After detrending using a Hodrick-Prescott fil-

ter with smooth parameter 1600, I find that the quarterly autocorrelation of the employment

exit probability is 0.56, and so I calibrate the monthly autocorrelation to ρx = 0.83 ≈ 0.561/3.

I set the standard deviation to ςx = 0.034 so as to match the unconditional standard deviation

of the detrended employment exit probability, ςx√
1−ρ2

x

= 0.061. The remaining parameters

are fixed at their levels in Table 3.2, except that I shut down the productivity shocks.

When I simulate the model, I find that

log θ = log 0.078 + 0.098sx − 0.480(logn− log 0.95) − 2.779(log k̃ − log 218.2),

log c̃ = log 4.696 − 0.001sx + 0.014(logn− log 0.95) + 0.603(log k̃ − log 218.2).

Notably, an increase in the employment exit probability raises the recruiter-unemployment

ratio. One might intuitively have expected the opposite response. When the employment

exit probability increases, firms do not expect jobs to last as long. This reduces the value of

jobs and encourages firms to use their current workers for production rather than recruiting.

On the other hand, if firms do not increase their recruiting effort, employment and hence

production will be unusually low in subsequent periods. This reduces the interest rate and

gives firms an incentive to recruit more workers. Moreover, wages fall in response to workers’

worsening situation, which raises the value of a job and further encourages recruiting. In

equilibrium, these last two forces dominate the first.

This has two important implications. First, part of an increase in the employment exit

probability is offset by an endogenous increase in the job finding probability f(θ(st)), reducing

the impact on employment. In practice, this effect is small, however. I find that the standard

13The data are available from http://robert.shimer.googlepages.com/flows. I use quarterly averages
of the underlying monthly data because the monthly data are contaminated by measurement error.
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deviation of the log job finding probability is only 0.07 times the standard deviation of

the log employment exit probability. In the data, the job finding probability is 1.4 times

as volatile. Second, the employment exit probability is positively correlated with the job

finding probability. In the model, the correlation of the logarithm of two variables is 0.91

and the correlation of the annual growth rate of the two variables is 0.98. In the data, the

correlation between the two series is −0.43 when detrended and −0.46 when measured as

annual growth rates. The model with only a shock to the employment exit probability fails

along both dimensions.

3.3.4 Two Shock Model

I next extend the model in two dimensions: I allow the shock to the employment exit proba-

bility also to affect productivity; and I introduce a second shock that only affects productivity.

I leave the stochastic process for deviation of the employment exit probability from its av-

erage value, equation (3.68), unchanged. In addition, I assume that the deviation of log

productivity from trend, sz,t = log z(st) − s̄t, follows a linear process,

sz,t+1 = ρzsz,t + ςzυz,t+1 − ςzxυx,t+1, (3.69)

where υz,t+1 is a second white-noise innovation with mean 0 and standard deviation 1, inde-

pendent from υx,t+1 as well as from all leads and lags of that shock.

It may be useful to think of υx as a reallocation shock that affects both the employment

exit probability and productivity, in opposite directions, while υz is an aggregate shock

that only has an impact on productivity. This approach seems broadly consistent with

the idea that some shocks reduce the productivity in all firms, while others reduce average

productivity but hurt some firms more than others, leading to an increase in the exit rate

from employment (Blanchard and Diamond, 1989). Still, labeling one shock “reallocation”

and the other “aggregate” is arbitrary, as is the introducing correlation between sx and sz

through the direct impact of the reallocation shock on productivity.

I leave the stochastic process for the employment exit probability unchanged, ρx = 0.83

and ςx = 0.034. I also keep the autocorrelation of productivity fixed at its value in Sec-

tion 3.2.6, ρz = 0.98. I then use two targets to set the remaining parameters, the weights

on the innovations ςz and ςzx. First, the monthly standard deviation of the deviation of

productivity from trend is now equal to
√

ς2z + ς2zx; I keep that fixed at approximately 0.005.

Second, I find that these two parameters are critical for the correlation between the job

finding and exit probabilities, −0.43 in the detrended data.14 If ςz is large relative to ςzx,

14In the model, I continue to assume f(θ) = µ̄θη and so log f and log θ are perfectly correlated. Thus the
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the job finding and employment exit probabilities may be positively correlated. When ςzx is

relatively large, the two probabilities are too strongly negatively correlated. I set ςz = 0.0037

and ςzx = 0.0034 to hit these two targets.

With this calibration, the policy functions become

log θ = log 0.078 + 7.387sz + 0.098sx − 0.480(logn− log 0.95) − 2.779(log k̃ − log 218.2),

log c̃ = log 4.696 + 0.250sz − 0.001sx + 0.014(logn− log 0.95) + 0.603(log k̃ − log 218.2).

An increase in reallocation (υx,t+1 > 0) raises sx and reduces sz. In this calibration, the latter

effect dominates and so the recruiter-unemployment ratio and consumption both fall. An

adverse aggregate shock reduces sz and so has the same effect on the two policy variables.

Turning to the state equations, I find

logn+1 = log 0.95 + 0.126sz − 0.032sx + 0.312(logn− log 0.95) − 0.047(log k̃ − log 218.2),

log k̃+1 = log 218.2 + 0.020sz + 0.000sx + 0.019(logn− log 0.95) + 0.991(log k̃ − log 218.2).

An increase in reallocation reduces next period’s employment and slightly increases next

period’s capital stock.15 An adverse aggregate shock has the same effect.

As usual, I can express the state of the economy as m ≡ {sz, sx, logn− log n̄, log k̃− log k̄}
and represent the transitional dynamics as m+1 = Am+Dυ+1, where A is a 4× 4 transition

matrix and so Am is the expected value of m+1 conditional on m and D determines how the

shock υ+1 = {υz,+1, υx,+1} affects the state of the system. For this choice of parameters,

A =













0.980 0 0 0

0 0.830 0 0

0.126 −0.032 0.312 −0.047

0.020 0.000 0.019 0.991













and

D =













ςz −ςzx

0 ςx

0 0

0 0













.

The eigenvalues of A are effectively unchanged and remain between 0 and 1. Two of them

represent the persistence of the shocks, 0.98 for productivity and 0.83 for the employment

correlation between the employment exit probability and the recruiter-unemployment ratio is also −0.43.
15The coefficient on sx is a negligible 0.00002.
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exit probability. The other two eigenvalues represent the slow adjustment of the capital stock

to steady state, 0.99, and the comparatively fast adjustment of employment to steady state,

0.33.

The next step is to compute the unconditional variance-covariance matrix of the state

variables, Σ ≡ AΣA′ + DD′, and of any associated variables m̃ ≡ Ãm. I confirm that

the unconditional standard deviation of the employment exit probability is 0.061 and the

correlation between the employment exit probability and the job finding probability is −0.43.

Both numbers are consistent with the detrended data. Moreover, the model predicts that the

job finding probability is slightly more volatile than the employment exit probability, with a

standard deviation of 0.074. In the detrended data, the standard deviation of the job finding

probability is 0.083. Since I did not target this parameter, this may be viewed as a success

of the model.

I turn next to the usual matrix of relative standard deviations and correlations in Ta-

ble 3.7. The results are similar to those in Table 3.3, the results from the same model without

the shock to the employment exit probability. Shocks to the employment exit probability

raise the relative standard deviation of employment from 11 percent of the standard deviation

of output to 16 percent. They also slightly reduce the correlation between employment and

all other variables. None of the other numbers in the table change appreciably. In particular,

the correlation between the labor wedge and employment remains strongly positive (0.86

instead of 0.96) and the correlation between the labor wedge and the consumption output

falls slightly from −1.00 to −0.99. Although I do not show the behavior of annual growth

rates, the changes from Table 3.4 are similarly modest.

The bottom line is that, although fluctuations in the employment exit probability may

explain some of the movements in employment, they do not explain the cyclical behavior of

the labor wedge. To get some intuition for this finding, think back again to a frictionless

model. Suppose, for some reason, there was a shock that forced some household members

out of their job. The household would immediately respond by sending other members

to work, leaving employment and the labor wedge unchanged. With search frictions, the

household cannot do this instantaneously, but shocks to the employment exit probability

still act mainly to increase labor turnover and have little effect on the behavior of the labor

wedge. The conclusion that search frictions act like a procyclical tax on labor is unchanged.

I need to look beyond this model for an explanation of the behavior of the labor wedge.
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ỹ c̃ θ k̃ n wn/y c/y τ̂ sz sx

Relative s.d. 1 0.711 4.152 0.984 0.156 0.013 0.525 0.578 0.71 1.713
ỹ 1 0.865 0.714 0.742 0.674 -0.826 -0.733 0.726 0.974 -0.365

c̃ — 1 0.272 0.978 0.266 -0.519 -0.293 0.292 0.734 -0.136

θ — — 1 0.066 0.869 -0.877 -0.991 0.999 0.853 -0.432

k̃ — — — 1 0.084 -0.347 -0.089 0.087 0.576 -0.036

Correlations n — — — — 1 -0.718 -0.925 0.855 0.767 -0.644

wn/y — — — — — 1 0.871 -0.895 -0.905 0.591

c/y — — — — — — 1 -0.988 -0.861 0.512

τ̂ — — — — — — — 1 0.863 -0.437

sz — — — — — — — — 1 -0.402

sx — — — — — — — — — 1

Table 3.7: Model with shocks to productivity and to the employment exit probability, deter-
ministic trend. Co-movements of variables in an infinite sample.



Chapter 4

Rigid Wages

The search models in Chapters 2 and 3 make two significant departures from the frictionless

model in Chapter 1. The first is of course the introduction of search frictions. In the

search model, firms use some of their employees to recruit new workers, and the difficulty of

recruiting depends on the ratio of recruiters to unemployed workers. The second departure

is the determination of wages. Although perhaps more subtle, this assumption is no less

important. In the presence of search frictions, matched workers and firms are in a bilateral

monopoly situation. Standard arguments that competitive forces equate the wage both to the

marginal rate of substitution between consumption and leisure and to the marginal product

of labor are inapplicable. I have instead assumed that the wage is set by Nash bargaining and

was able to express it as a weighted average of the MRS and MPL, e.g. in equation (3.43).

Starting with Shimer (2005) and Hall (2005), a recent body of research has assessed the

importance the Nash bargaining assumption by considering the role of wage rigidities in search

models. In some sense, one can think of this research as a modern effort to capture certain

aspects of disequilibrium macroeconomic models (Barro and Grossman, 1971; Malinvaud,

1977; Benassy, 1982). In particular, a search model with rigid wages provides a way of

analyzing “classical unemployment,” i.e. unemployment caused by high wages.

It is not easy to model wages that are too high in a competitive framework. Loosely

speaking, the equilibrium of a competitive business cycle model like that in Chapter 1 is

described by κ equations in κ unknown variables, one of which is the wage. Since the wage

is an equilibrium object, it does not make sense within the context of the model to ask what

happens if it is too high. That is, we know that if the wage is not equal to its equilibrium

level, one (or more) of the equations describing the equilibrium must be dropped to ensure

a solution to the remaining system of κ− 1 equations in κ− 1 variables. But a competitive

business cycle model provides no guidance about which equation should be dropped, and

hence does not inform us about the disequilibrium values of the κ− 1 other variables.

113



114 CHAPTER 4. RIGID WAGES

The search model provides the necessary guidance. In the benchmark model, the wage is

a weighted average of the MRS and the MPL, but that restriction is no more plausible than

a myriad of other possibilities. Replacing the Nash bargaining solution with an alternative

assumption on wage setting substitutes one equation for a different one. I show in this chapter

that the model is still well-behaved, and so we can use it to ask what happens if wages are

too high, i.e. higher than the wage predicted by the Nash bargaining solution. I find that

this may help to explain the behavior of the labor wedge.

4.1 Wage Indeterminacy

My starting point is the observation that there is typically a set of wages that a worker is

willing to accept, Ṽn(st, w) ≥ 0, and that a firm is willing to pay, J̃n(st, w) ≥ 0. Take, for

example, the model in Section 3.2 with capital. Using equations (3.38), (3.40), and (3.47),

J̃n(s
t, w) ≥ 0 if and only if

(1 − α)z(st)

(

k(st)

n(st) − θ(st)(1 − n(st))

)α(

1 +
1 − x

µ(θ(st))

)

≥ w.

The left hand side is the marginal product of a producer plus the marginal product of the

workers freed from recruiting by the possibility of the worker is still around next period,

the MPL. The firm will employ a worker as long as this exceeds the wage. Similarly, using

equations (3.33), (3.38), (3.42), and (3.43), Ṽn(st, w) ≥ 0 if and only if

w ≥ γc(st)

1 − τ
− φ

1 − φ
(1 − α)z(st)

(

k(st)

n(st) − θ(st)(1 − n(st))

)α(
1 − x− f(θ(st))

µ(θ(st))

)

.

The first term is the marginal rate of substitution between consumption and leisure divided

by the share of labor income that the household keeps. The second term incorporates the

increase in the probability of employment next period from having a job this period; this drops

out if 1−x = f(θ(st)), so next period’s employment status is independent of this period’s. In

the calibrated model, 1− x > f(θ(st)), meaning that a worker is more likely to be employed

next month if she is employed this month. This implies that a worker will accept a job

paying an after tax wage less than γc(st), the current marginal rate of substitution between

consumption and leisure, in order to increase the likelihood that she has a job next period.

To get a sense of the size of band of wage indeterminacy, I evaluate these inequalities along

a balanced growth path, as in Section 3.2.5, with the usual calibration of model parameters.

I find that a worker is willing to work in history st if w > 0.88w(st), while a firm is willing

to employ a worker if w < 1.12w(st). These leaves a lot of room for wages to deviate from
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the equilibrium wage w(st) without eliminating the bilateral gains from trade.

Within an employment relationship, the level of the wage does not have any allocational

effects and so there is no possibility of a bilateral Pareto improvement for a matched worker

and firm. Indeed, since households own the firms, the wage simply affects the distribution of

capital and labor income, without altering consumption. But future wages determine whether

firms allocate workers to production or recruiting. If they expect wages to be low relative to

productivity, they will allocate more workers to recruiting, pulling down the unemployment

rate. This is the key reason why the rigid wage model that I develop in this chapter can

significantly affect the unemployment rate.

I start my formal analysis in the next section by extending the benchmark model without

capital to allow for rigid wages. I distinguish between a target wage w∗(st), which is deter-

mined by axiomatic Nash bargaining, and the actual wage w(st), which is a weighted average

of the past actual wage adjusted for average productivity growth and the current target wage,

w(st) = rw(st−1)es̄ + (1− r)w∗(st). When r = 0, the actual wage and target wage are equal,

as in the benchmark model. When r = 1, the actual wage grows with productivity. I then

reintroduce capital. I find that rigid wages significantly amplify employment fluctuations and

may be able to explain the behavior of the labor wedge. A transitory increase in productivity

growth leads to a persistent increase in employment because wages take some time to catch

up with productivity. During much of the adjustment process, the measured labor wedge is

negative, consistent with the empirical correlation between the labor wedge and employment.

I close the chapter by noting that the approach I take to rigid wages is somewhat arbitrary.

That is, there are many alternative models of rigid wages, each of which would potentially

give a different prediction for the behavior of employment. Following Hall (2009), I show

that the rest of the model’s structure still puts some restrictions on the data it can generate.

Effectively, rigid wages can make it look as if the elasticity of labor supply is infinite along

the extensive margin. That is, the search model with rigid wages can potentially explain why

it looks as if the elasticity of labor supply is very high, even though households would prefer

a smoother path of employment at the prevailing wage.

4.2 No Capital

I return to the model without capital from Section 2.2. The households’ and firms’ problems

are the same, with only the wage-setting procedure changed. I repeat the main results from

those problems here before turning to wages.
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4.2.1 Households

I assume the period utility function is log c for an unemployed individual who consumes c and

log c−γ for an employed individual who consumes c. The household problem then gives three

key results. First is the consumption Euler equation with log preferences over consumption:

qt(s
t+1) = β

Π(st+1)c(st)

Π(st)c(st+1)
. (4.1)

Second, the value of having an additional worker employed is equal to her after-tax wage,

measured in units of marginal utility, minus the disutility of working, plus the discounted

value of having an additional worker employed next period, multiplied by the increase in the

probability that the worker is employed next period if she has a job this period:

Vn(s
t, a(st), n(st)) =

(1 − τ)w(st)

c(st)
− γ

+ β(1 − x− f(θ(st)))
∑

st+1|st

Π(st+1)

Π(st)
Vn(st+1, a(st+1), n(st+1)). (4.2)

Finally, the marginal value of having a worker employed at an arbitrary wage w rather than

the unemployed is

Ṽn(st, w) =
(1 − τ)(w − w(st))

c(st)
+ Vn(st, a(st), n(st)), (4.3)

the increment in the after-tax wage, measured in utils, plus the marginal value of an employed

worker.

4.2.2 Firms

The firm’s problem also delivers three key results. First, for firms to be willing to engage both

in recruiting and production, the returns from the two activities must be equal. Producing

yields output z(st) today, while recruiting yields µ(θ(st)) new employees tomorrow, each

valued at J̄(st+1), so

z(st) = µ(θ(st))
∑

st+1|st

qt(s
t+1)J̄(st+1). (4.4)

Second, by employing one more worker today, the firm gets an additional z(st) units of

output. It may also reallocate (1 − x)/µ(θ(st)) workers from recruiting to production and

still have the same expected employment next period, further raising current production. On

the other hand, it must pay the wage. Putting this together, when the firm is indifferent
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between recruiting and producing, the marginal value of employing an additional worker is

J̄(st) = z(st)

(

1 +
1 − x

µ(θ(st))

)

− w(st). (4.5)

Finally, the marginal value of employing a worker at an arbitrary wage w rather than losing

the worker is

J̃n(st, w) = w(st) − w + J̄(st), (4.6)

the decrement in the wage plus the marginal value of a job.

4.2.3 Market Clearing

Next there are two market-clearing conditions. The employment level next period is equal to

the number of employed workers who keep their job plus the number of unemployed workers

who find a job,

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)), (4.7)

and consumption is equal to productivity times the number of employed workers who are not

recruiters,

c(st) = z(st)
(

n(st) − θ(st)(1 − n(st))
)

, (4.8)

where the number of recruiters is the ratio of recruiters to unemployment θ times unemploy-

ment 1 − n. Note that this last condition combines equations (2.44) and (2.45).

4.2.4 Wages

I turn now to the new part of the model, backward-looking wage setting. I assume that the

target wage solves the Nash bargaining problem,

w∗(st) = arg max
w

Ṽn(st, w)φJ̃n(st, w)1−φ, (4.9)

while the actual wage is a weighted average of last period’s wage, adjusted for productivity

growth. and the current target wage,

w(st) = rw(st−1)es̄ + (1 − r)w∗(st), (4.10)

where r ∈ [0, 1) is a parameter and s̄ is long run average productivity growth,

s̄ ≡ lim
t′→∞

∑

st′ |st

Π(st′)

Π(st)

log z(st′) − log z(st)

t′ − t
.
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This notation and the discussion that follows presumes that s̄ is well-defined and independent

of the initial history st, consistent with both a deterministic and a stochastic trend in pro-

ductivity. Note that the benchmark model imposes r = 0, while r = 1 corresponds to wages

that do not respond to shocks, in which case the wage path is determined by an exogenous

initial condition.

I use these equations to solve for the target wage. First, equations (4.3) and (4.6) imply

∂Ṽn(st, w)

∂w
=

1 − τ

c(st)
, Ṽn(s

t, w∗(st)) =
(1 − τ)(w∗(st) − w(st))

c(st)
+ Vn(st, a(st), n(st))

∂J̃n(st, w)

∂w
= −1, and J̃n(st, w∗(st)) = w(st) − w∗(st) + J̄(st).

Use these expressions to write the necessary and sufficient first order condition from maxi-

mizing equation (4.9) as

(1 − φ)Vn

(

st, a(st), n(st)
)

c(st) = (1 − τ)
(

φJ̄(st) + w(st) − w∗(st)
)

. (4.11)

Combining this with equation (4.2) and using the Euler equation (4.1) implies

(1 − τ)
(

φJ̄(st) + w(st) − w∗(st)
)

= (1 − φ)(1 − τ)w(st) − (1 − φ)c(st)γ

+ (1 − τ)(1 − x− f(θ(st)))
∑

st+1|st

qt(s
t+1)

(

φJ̄(st+1) + w(st+1) − w∗(st+1)
)

.

Next eliminate J̄(st) using equation (4.5) and J̄(st+1) using equation (4.4). After simplifying

I obtain an equation for the wage target,

w∗(st) = φz(st)(1 + θ(st)) + (1 − φ)
γc(st)

1 − τ

+ (1 − x− f(θ(st)))
∑

st+1|st

qt(s
t+1)
(

w∗(st+1) − w(st+1)
)

. (4.12)

The first two terms are the usual weighted average of the current marginal product of labor

and the current marginal rate of substitution, while the third term is new. The wage rigid-

ity introduces the possibility that the actual and target wages differ, w(st+1) 6= w∗(st+1).

Assuming 1 − x > f(θ(st)), so a worker is more likely to be employed next period if she is

employed this period, the expectation that the actual wage will be below the target wage next

period puts upward pressure on the target wage this period. Nash bargaining automatically

compensates for the loss in future wages.

To understand wage dynamics when r ∈ (0, 1), suppose for a moment that productivity,
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consumption, and the ratio of recruiters to unemployed workers are constant. Also assume

s̄ = 0. Then equation (4.12) reduces to

w∗
t = φz̄(1 + θ̄) + (1 − φ)

γc̄

1 − τ
+ β(1 − x− f(θ̄))

(

w∗
t+1 − wt+1

)

.

Together with the wage adjustment equation (4.10), this is a pair of first order linear difference

equations for the actual wage wt and the target wage w∗
t . The eigenvalues of the resulting

system are both positive, with one bigger than unity and one smaller than unity, consistent

with saddle path dynamics. Since both eigenvalues are positive, the actual and target wages

converge monotonically towards the steady state w̄ = φz̄(1+ θ̄)+(1−φ) γc̄
1−τ

. Moreover, along

the saddle path, there is a decreasing relationship between wt and w∗
t . That is, w0 ≷ w̄ implies

wt ≷ w̄ ≷ w∗
t for all t. Along the adjustment path, the wage solves wt+1 = r̃wt + (1 − r̃)w̄

where

r̃ ≡
1 + rβ(1 − x− f(θ̄)) −

√

(

1 + rβ(1 − x− f(θ̄))
)2 − 4r2β(1 − x− f(θ̄))

2rβ(1 − x− f(θ))
.

One can confirm that 0 < r̃ < r, so the adjustment towards steady state is faster than under

the “näıve” rule wt+1 = rwt + (1 − r)w̄. This is because the target wage is forward-looking,

rising above steady state when next period’s wage is expected to be below next period’s

target.

4.2.5 Balanced Growth

Suppose productivity grows deterministically at rate s̄ > 0, log z(st+1) = log z(st)+ s̄. There

is an equilibrium where consumption and actual and target wages grow at rate s̄, while

employment and the ratio of recruiters to unemployed are constant. That is, c(st) = c̄z(st),

w(st) = w̄z(st), w∗(st) = w̄∗z(st), n(st) = n̄ and θ(st) = θ̄. The proof of this claim is simple.

Under the conjectured functional forms, equation (4.10) implies actual and target wages are

equal, w̄ = w̄∗, and hence a comparison of equations (2.43) and (4.12) indicates that both

are equal to their value in the flexible wage economy. The remaining equations are therefore

also unchanged.

The assumption that the wage is a weighted average of last period’s wage adjusted for

productivity growth and the current target wage is important for this result. Without the

adjustment, faster productivity growth would reduce the current wage relative to the target

wage. This would act like a reduction in workers’ bargaining power, giving firms an incentive

to shift workers into recruiting and reducing unemployment along the balanced growth path.
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4.2.6 Productivity Shocks: Deterministic Trend

Now suppose log z(st) = s̄t+ st where st follows a stationary first order Markov process with

mean 0. Thus s̄ is the deterministic growth rate while st represents a transitory deviation

from trend. Let π(st+1|st) ≡ Π(st+1)/Π(st) denote the probability of state st+1 next period

conditional on state st this period, where st ≡ {st−1, st} and st+1 ≡ {st, st+1}. As usual

define consumption, actual wages, and target wages relative to the underlying growth rate

as c̃(st) ≡ c(st)e−s̄t, w̃(st) ≡ w(st)e−s̄t, and w̃∗(st) ≡ w∗(st)e−s̄t. I look for an equilibrium

where detrended consumption, detrended actual and target wages, and employment and the

recruiter-unemployment ratio are stationary.

In the stochastic model, equations (4.1), (4.4), and (4.5) imply

est = βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

(

est+1
1 − x+ µ(θ(st+1))

µ(θ(st+1))
− w̃(st+1)

)

.

Eliminate c̃(st) using equation (4.8), c̃(st) = est
(

n(st) − θ(st)(1 − n(st))
)

:

1 = βµ(θ(st))
∑

st+1|st

π(st+1|st)
n(st) − θ(st)(1 − n(st))

n(st+1) − θ(st+1)(1 − n(st+1))
×

(

1 +
1 − x

µ(θ(st+1))
− w̃(st+1)

est+1

)

. (4.13)

Similarly, eliminate c̃(st) from equation (4.12) for the target wage:

w̃∗(st)e−st = φ(1 + θ(st)) + (1 − φ)
γ

1 − τ

(

n(st) − θ(st)(1 − n(st))
)

+β(1−x−f(θ(st)))
∑

st+1|st

π(st+1|st)
n(st) − θ(st)(1 − n(st))

n(st+1) − θ(st+1)(1 − n(st+1))

(

w̃∗(st+1) − w̃(st+1)

est+1

)

.

(4.14)

The state variables n and w̃ are in turn governed by equation (4.7), which is unchanged, and

by equation (4.10), which reduces to

w̃(st) = rw̃(st−1) + (1 − r)w̃∗(st). (4.15)

Equations (4.7) and (4.13)–(4.15) relate stationary variables and so admit a solution in which

the policy functions and the evolution of employment and wages relative to trend depend only

on the current value of the exogenous state variable st, the current level of employment n(st),

and the previous period’s wage relative to trend w̃(st−1). That is, the policy functions take the
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form θ(st) = Θ(st, n(st), w̃(st−1)) and w̃∗(st) = W ∗(st, n(st), w̃(st−1)) and the state variables

evolve according to n(st+1) = N(st, n(st), w̃(st−1)) and w̃(st) = W (st, n(st), w̃(st−1)).

I log-linearize equations (4.7) and (4.13)–(4.15) around a stochastic steady state for

(s, n, w̃−1) and look for policy functions and laws of motion that are linear in the devia-

tion of the state variables from their stochastic steady state values. The model has one new

parameter, the persistence of wages r. I initially set r = 0.9, so wages adjust about half way

to the stochastic steady state in six months, but I consider the sensitivity of my results to

that parameter. The remaining parameters are unchanged from their values in Table 3.2, ex-

cept the capital share, which is implicitly α = 0, and the value of leisure, which I recalibrate

to γ = 0.579 to ensure a five percent unemployment rate in steady state.

With this calibration, the equilibrium policy functions are

log θ = log 0.078 + 24.351s− 0.743(logn− log 0.95) − 26.034(log w̃−1 − log 0.995)

log w̃∗ = log 0.995 + 2.471s+ 0.476(logn− log 0.95) − 1.574(log w̃−1 − log 0.995),

where w̃−1 is last period’s wage, 0.078 is the steady state recruiter-unemployment ratio,

n̄ = 0.95 is the steady state employment rate, and w̄ = 0.995 is the steady state ratio of wages

to productivity. In contrast to the flexible wage version of this model, where productivity

has no real effects, positive productivity shocks now raise the recruiter-unemployment ratio,

while high wages have the opposite effect. On the other hand, if last period’s wage was above

trend, the current target wage will be below trend, helping to pull the actual wage back to

trend. This is the saddle path dynamics of the actual and target wage that I discussed before.

The state variables evolve as

n+1 = log 0.95 + 0.414s+ 0.307(logn− log 0.95) − 0.443(log w̃−1 − log 0.995),

w̃ = log 0.995 + 0.247s+ 0.048(logn− log 0.95) + 0.743(log w̃−1 − log 0.995).

An increase in productivity immediately raises employment and wages. Higher employment

continues to put upward pressure on wages, while higher wages are self-reinforcing because of

the slow adjustment process. Eventually higher wages start to reduce employment, returning

the economy to steady state.

As usual, I can stack the state variables, m = {s, logn − log n̄, log w̃−1 − log log w̄}, and

express the transitional dynamics as m+1 = Am+Dυ+1. The eigenvalues of the matrix A are

all positive and less than one, confirming that the equilibrium is locally stable. The largest,

0.980, is equal to the autocorrelation in productivity. The lowest, 0.363, is determined by the

rapid adjustment of employment to steady state. The intermediate one, 0.687, reflects the
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speed of adjustment in wages. Notably this is significantly faster than the näıve persistence

measure r = 0.9 and suggests that the autocorrelation of wages may be low despite their

strong backward-looking nature.

Finally, I can compute the unconditional variance-covariance matrix Σ = AΣA′ + DD′.

Using this, I find that the unconditional standard deviation of log employment is about 15

percent of the unconditional standard deviation of the productivity shock, or 0.004. Con-

versely, the unconditional standard deviation of log wages falls slightly, from 0.025 in the

flexible wage model (r = 0) to 0.023 in the model with rigid wages.

When wage rigidities are more severe, say r = 0.99, all the results are amplified. In this

case, the linearized state variables satisfy

n+1 = log 0.95 + 1.570s+ 0.338(logn− log 0.95) − 1.822(log w̃−1 − log 0.995),

w̃ = log 0.995 + 0.066s+ 0.006(logn− log 0.95) + 0.925(log w̃−1 − log 0.995).

Compared to the case of r = 0.9, employment is more responsive and wages are less respon-

sive to shocks, while both variables respond more to past wages since that state is increasingly

relevant. The local dynamics remain stable, with eigenvalues 0.980, 0.906, and 0.356. Al-

though the middle eigenvalue is higher than before, the persistence of the root associated with

wage dynamics remains far below unity. Nevertheless, this significantly alters the variance-

covariance matrix. The unconditional standard deviation of log employment is slightly larger

than the unconditional standard deviation of the productivity shock, or 0.025. This still does

little to mute the behavior of wages, whose standard deviation falls only slightly more, to

0.020.

These results suggest that rigid wages may significantly amplify productivity shocks with-

out much affecting the behavior of wages. Although it is possible to further explore the model

without capital, for example by studying a stochastic trend in productivity, the implications

of rigid wages for labor market outcomes are best understood by reintroducing savings and

investment. I return to the more general model now.

4.3 Capital

I extend the model with capital in Section 3.2 to allow for rigid wages. Once again, the

households’ and firms’ problems are unchanged. I repeat the main results from those problems

before describing wage determination.
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4.3.1 Households

The implications of household optimization are summarized by equations (3.31)–(3.33). I

repeat them for convenience. Consumption satisfies the Euler equation, determining the

intertemporal price,

qt(s
t+1) = β

Π(st+1)c(st)

Π(st)c(st+1)
. (4.16)

The marginal value of an additional employed household member is the after tax wage ex-

pressed in units of marginal utility, minus the disutility of work, plus the increase in the

probability that the worker is employed the following period, multiplied by the expected

marginal value of an employed household member in that period:

Vn(s
t, a(st), n(st)) =

(1 − τ)w(st)

c(st)
− γ

+ β(1 − x− f(θ(st)))
∑

st+1|st

Π(st+1)

Π(st)
Vn(st+1, a(st+1), n(st+1)). (4.17)

Finally, the marginal value of having a worker employed at an arbitrary wage w rather

than the unemployed is the value of receiving w rather than the equilibrium wage w(st),

discounting taxes and expressed in units of marginal utility, plus the value of an additional

employed household member:

Ṽn(st, w) =
(1 − τ)(w − w(st))

c(st)
+ Vn(st, a(st), n(st)). (4.18)

4.3.2 Firms

The implications of firm optimization are given by the four conditions in equations (3.37)–

(3.40). Again, I repeat them for convenience, eliminating the share of recruiters in employ-

ment using the analog of equation (3.47). First, if firms are at an interior solution both for

recruiting,

(1 − α)z(st)

(

k(st)

n(st) − θ(st)(1 − n(st))

)α

= µ(θ(st))
∑

st+1|st

qt(s
t+1)Jn(st+1, n(st+1), k(st+1)).

(4.19)

The left hand side is the output generated by a producer in the current period, where n −
θ(1−n) is the number of producers, i.e. workers minus recruiters. The right hand side is the

future value generated by a recruiter.
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Second, the marginal value of an employed worker in history st is

Jn(st, n(st), k(st)) = (1 − α)z(st)

(

k(st)

n(st) − θ(st)(1 − n(st))

)α(

1 +
1 − x

µ(θ(st))

)

− w(st).

(4.20)

The worker can produce this period. In addition, she frees (1 − x)/µ(θ(st)) other workers

from having to recruit, while allowing the firm to maintain its size. Finally, she is paid a

wage.

Third, the firm must be indifferent about investing,

1 =
∑

st+1|st

qt(s
t+1)

(

αz(st+1)

(

k(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α−1

+ 1 − δ

)

. (4.21)

The left hand side is the cost of buying a unit of capital. The right hand side is the expected

net marginal product of capital next period.

Finally, the marginal profit of employing a worker at an arbitrary wage w in history st

and the equilibrium wage thereafter, rather than losing the worker, is equal to the difference

between the equilibrium wage and her actual wage plus the marginal value of an employed

worker,

J̃n(st, w) = w(st) − w + Jn(st, n(st), k(st)). (4.22)

4.3.3 Market Clearing

There are two market clearing conditions. Employment next period is

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)). (4.23)

And the capital stock next period is

k(st+1) = z(st)k(st)α
(

n(st) − θ(st)(1 − n(st))
)1−α

+ (1 − δ)k(st) − c(st). (4.24)

Again these are unchanged from the flexible wage model.

4.3.4 Wages

As in the first part of this chapter, I again assume that the target wage solves the Nash

bargaining problem,

w∗(st) = arg max
w

Ṽn(st, w)φJ̃n(st, w)1−φ, (4.25)
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while the actual wage is a weighted average of last period’s wage adjusted for productivity

growth and the current target wage,

w(st) = rw(st−1)e
s̄

1−α + (1 − r)w∗(st), (4.26)

where r ∈ [0, 1) and s̄ is the average productivity growth rate. Note that if total factor

productivity grows at a steady rate s̄, consumption, output, and wages all grow at rate

s̄/(1 − α), so the adjustment keeps wages in line with average wage growth.

I characterize the target wage using the same approach as in the first part of the chapter.

In particular, use equations (4.18) and (4.22) to determine Ṽn(st, w∗(st)), J̃n(st, w∗(st)), and

their partial derivatives. Then use these to write the necessary and sufficient first order

condition from maximizing equation (4.25) as

(1 − φ)Vn

(

st, a(st), n(st)
)

c(st) = (1 − τ)
(

φJn(s
t, n(st), k(st)) + w(st) − w∗(st)

)

. (4.27)

Combining this with equation (4.17) and using the Euler equation (4.16) implies

(1 − τ)
(

φJn(st, n(st), k(st)) + w(st) − w∗(st)
)

= (1 − φ)(1 − τ)w(st) − (1 − φ)γc(st)

+ (1− τ)(1 − x− f(θ(st)))
∑

st+1|st

qt(s
t+1)

(

φJn(st+1, n(st+1), k(st+1)) +w(st+1)−w∗(st+1)
)

.

Eliminate the current marginal value of a worker Jn(s
t, n(st), k(st)) using equation (4.20)

and the expected future marginal value of a worker
∑

st+1|st qt(s
t+1)Jn(st+1, n(st+1), k(st+1))

using equation (4.19). This gives an equation for the target wage,

w∗(st) = φ(1 − α)z(st)

(

k(st)

n(st) − θ(st)(1 − n(st))

)α

(1 + θ(st)) + (1 − φ)
γc(st)

1 − τ

+ (1 − x− f(θ(st)))
∑

st+1|st

qt(s
t+1)
(

w∗(st+1) − w(st+1)
)

. (4.28)

This is a generalization of equation (3.43) to the case where w(st) and w∗(st) are not neces-

sarily equal, or equivalently a generalization of equation (4.12) to the case where the marginal

product of labor is not simply z(st).
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4.3.5 Balanced Growth

As in the model without capital, rigid wages do not affect the balanced growth path. That

is, if productivity grows deterministically at rate s̄ > 0, log z(st+1) = log z(st)+ s̄, then there

is an equilibrium in which consumption, capital, and actual and target wages grow at rate

s̄/(1−α), while employment and the ratio of recruiters to unemployed are constant. To prove

this, assume that the actual and target wages both grow at rate s̄/(1−α), w(st) = w̄es̄t/(1−α)

and w∗(st) = w̄∗es̄t/(1−α). Then equation (4.26) implies w̄ = rw̄ + (1 − r)w̄∗, or w̄ = w̄∗.

But if the actual wage is equal to the target wage, which in turn solves the Nash bargaining

problem, the actual wage is unchanged from the flexible wage model. Since nothing else has

changed, the entire equilibrium is unchanged.

4.3.6 Productivity Shocks: Deterministic Trend

To introduce shocks into the model, assume as usual that productivity fluctuates around

a deterministic trend, log z(st) = s̄t + st, where st follows a stationary first order Markov

process with mean 0. Let π(st+1|st) ≡ Π(st+1)/Π(st) denote the probability of state st+1

next period conditional on state st this period, where st ≡ {st−1, st} and st+1 ≡ {st, st+1}.
Define consumption, capital, actual wages, and target wages relative to the underlying growth

rate as c̃(st) ≡ c(st)e−s̄t/(1−α), k̃(st) ≡ k(st)e−s̄t/(1−α), w̃(st) ≡ w(st)e−s̄t/(1−α), and w̃∗(st) ≡
w∗(st)e−s̄t/(1−α).

I rewrite the equations in terms of stationary variables. The first two are unchanged from

the flexible wage model. Replace qt(s
t+1) in equation (4.21) using equation (4.16) to obtain

e
s̄

1−α = β
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)



αest+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α−1

+ 1 − δ



 ,

(4.29)

identical to equation (3.53). Similarly eliminate Jn between equations (4.19) and (4.20),

giving

(1 − α)est

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

= βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)
(

(1 − α)est+1

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 +
1 − x

µ(θ(st+1))

)

− w̃(st+1)

)

, (4.30)

identical to equation (3.54).

The expression for the target wage, equation (4.28), is new to this model. Expressed in
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terms of stationary variables, it becomes

w̃∗(st) = φ(1 − α)est

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

(1 + θ(st)) + (1 − φ)
γc̃(st)

1 − τ

+ β(1 − x− f(θ(st)))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

(

w̃∗(st+1) − w̃(st+1)
)

. (4.31)

The state equations (4.24) and (4.26) reduce to

k̃(st+1)e
s̄

1−α = est k̃(st)α
(

n(st) − θ(st)(1 − n(st))
)1−α

+ (1 − δ)k̃(st) − c̃(st) (4.32)

for the capital stock, identical to equation (3.56), and

w̃(st) = rw̃(st−1) + (1 − r)w̃∗(st) (4.33)

for the actual wage. Equation (4.23) for the employment rate is unchanged.

Equations (4.23) and (4.29)–(4.33) implicitly define the equilibrium policies θ(st), c̃(st),

and w̃∗(st) as functions of the state variables st, n(st), k̃(st), and w̃(st−1). As usual, I

solve the model by looking for a linear approximation to the optimal policy functions in a

neighborhood of the steady state. Most of the calibration is by now standard and uses the

values from the flexible wage model (Table 3.2), but there is one new parameter, the extent

of wage rigidity r. Since there is no clear empirical counterpart to this, I use the model for

two purposes. First, I examine whether wage rigidities help to align the model’s predictions

with the data. Second, I examine how changes in this parameter affect the behavior of the

model. I start by setting r = 0.95 and later consider alternative values.

The linear approximation to the equilibrium policy functions are

log θ = log 0.078 + 40.825s− 0.630(logn− log 0.95)

+ 10.441(log k̃ − log 218.2) − 38.184(log w̃−1 − log 4.017),

log c̃ = log 4.696 + 0.259s+ 0.014(logn− log 0.95)

+ 0.607(log k̃ − log 218.2) − 0.023(log w̃−1 − log 4.017),

log w̃∗ = log 4.017 + 2.974s− 0.215(logn− log 0.95)

+ 1.146(log k̃ − log 218.2) − 2.321(log w̃−1 − log 4.017).

Comparing with equation (3.61), the response of detrended consumption to the shock, to em-

ployment, and to detrended capital is virtually unchanged. On the other hand, the recruiter-

unemployment ratio is five times as responsive to the shock in the rigid wage model. It is
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somewhat more responsive to employment. And the sign of the response of the recruiter-

unemployment ratio to the detrended capital stock is reversed. The explanation for this last

result is instructive. In the flexible wage economy, the wealth effect from a high capital stock

put upward pressure on wages, which discouraged firms from recruiting. In the rigid wage

model, that effect is weakened, so the complementarity between capital and labor dominates.

When the capital stock is high, the marginal product of labor is high, which encourages more

recruiting at a given wage.

The policy functions also show that the recruiter-unemployment ratio falls sharply with

the lagged wage, while consumption falls modestly. The response of the recruiter-unem-

ployment ratio reflects the persistence of wages, since high future wages discourage hiring

today. Consumption falls with the lagged wage because low wages make it a profitable time

to recruit, which comes at the expense of current consumption.

Finally, the third policy function shows that when actual wages are above trend, the

target wage is far below trend, helping to realign the two variables. High capital and high

productivity each increase the target wage by raising the marginal product of labor, while

high employment has the opposite effect.

I turn next to the linear approximation to the state equations:

log n+1 = log 0.95 + 0.694s+ 0.309(logn− log 0.95)

+ 0.178(log k̃ − log 218.2) − 0.649(log w̃−1 − log 4.017),

log k̃+1 = log 218.2 + 0.018s+ 0.019(logn− log 0.95)

+ 0.990(log k̃ − log 218.2) + 0.003(log w̃−1 − log 4.017),

log w̃ = log 4.107 + 0.149s− 0.011(logn− log 0.95)

+ 0.057(log k̃ − log 218.2) + 0.834(log w̃−1 − log 4.017).

Higher productivity raises employment, capital, and wages. Employment responds five times

more to the shock than it does in the flexible wage model (equation 3.62), as one might expect

from the recruiter-unemployment ratio policy function. Employment is persistent, positively

influenced by past capital, and negatively influenced by past wages. The response of the

capital stock is largely unchanged from the flexible price model. Finally, wages fall with

employment and rise with capital due to pressure from the marginal product of labor. They

are also strongly related to past wages, although the coefficient on w̃−1, 0.83, is significantly

below the coefficient in equation (4.33), r = 0.95. The forward-looking target wage greatly

moderates the exogenous wage rigidity.

I then stack the four state variables to compute the eigenvectors, 0.990, 0.980, 0.854,

0.290. As usual, the largest eigenvector corresponds to the persistence of capital, the second
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 0.688 11.207 0.962 0.267 0.144 0.559 0.509 0.691

ỹ 1 0.844 0.514 0.720 0.559 -0.530 -0.75 0.794 0.982

c̃ — 1 0.068 0.980 0.083 -0.210 -0.278 0.393 0.751

θ — — 1 -0.104 0.856 -0.943 -0.837 0.703 0.596

k̃ — — — 1 -0.088 -0.069 -0.082 0.205 0.603

Correlations n — — — — 1 -0.663 -0.898 0.690 0.606

wn/y — — — — — 1 0.690 -0.612 -0.590

c/y — — — — — — 1 -0.938 -0.833

τ̂ — — — — — — — 1 0.893

s — — — — — — — — 1

Table 4.1: Model with capital and rigid wages (r = 0.95), deterministic trend. Co-movements
of variables in an infinite sample.

to the persistence of productivity shocks, and the smallest to the persistence of employment.

The third largest eigenvector represents the new state variable, the lagged wage. Since all

the eigenvectors lie in the unit circle, the model exhibits locally stable dynamics.

Table 4.1 shows the comovement of the key detrended economic variables. It is perhaps

best read by comparing with Table 3.3, which shows the behavior of the same variables in

the flexible wage model. Looking at the first row, rigid wages raise the standard deviation of

employment and the recruiter-unemployment ratio relative to output by almost a factor of

three. This increases the volatility of the labor share wn/y but, perhaps surprisingly, reduces

the volatility of the labor wedge τ̂ .

Turning to correlations, the rigid wage model substantially weakens the correlation be-

tween employment and the labor wedge, from 0.96 to 0.69. In the data, the correlation is

strongly negative. It similarly weakens the correlation between the consumption-output ratio

and the labor wedge, from −1.00 to −0.94, while the data indicates that the correlation is

close to zero. Thus this wage rigidity reduces but does not eliminate the gap between model

and data.

Finally, the model implies that the labor share wn/y is negatively correlated with em-

ployment, although less so than in the flexible wage model. When productivity rises above

trend, the rigidity prevents the wage from rising as much as it would in the flexible wage

model, driving the negative correlation. Acting against this, employment responds to the

low wage, reducing output per worker and keeping the labor wedge relatively constant.

Table 4.2 shows the annual growth rates of the same variables. The basic picture remains
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 0.259 21.884 0.265 0.513 0.300 0.807 0.551 0.717

ỹ 1 0.804 0.805 0.162 0.888 -0.653 -0.982 0.915 0.982

c̃ — 1 0.452 0.704 0.497 -0.366 -0.676 0.790 0.816

θ — — 1 -0.252 0.803 -0.96 -0.853 0.750 0.820

k̃ — — — 1 -0.157 0.261 0.025 0.164 0.164

Correlations n — — — — 1 -0.607 -0.941 0.670 0.806

wn/y — — — — — 1 0.692 -0.671 -0.708

c/y — — — — — — 1 -0.881 -0.955

τ̂ — — — — — — — 1 0.972

s — — — — — — — — 1

Table 4.2: Model with capital and rigid wages (r = 0.95), deterministic trend. Co-movements
of annual growth rates in an infinite sample.

unchanged. For example, rigid wages reduce the correlation between the annual growth rates

of the labor wedge and employment and the annual growth rates of the labor wedge and the

consumption-output ratio, but do not break or reverse either relationship.

These comovements stand out clearly in Figure 4.1, where I again contrast the baseline

model, with µ̄ = 2.32, to the model with more search costs, µ̄ = 1. Comparing this with

Figure 3.1, the response of employment to the productivity shock is both larger and faster.

Indeed, employment reaches its maximum value in the period immediately after the shock.

But while this dampens the response of the labor wedge, it does not reverse it. Indeed, the

labor wedge remains positive during most of the subsequent adjustment. This drives the

positive correlation between it and employment.

As I mentioned before, the choice of the wage rigidity parameter r was arbitrary. Indeed,

the results I have reported are sensitive to this choice. To see that, Figure 4.2 shows the

correlation between the labor wedge and both employment and the consumption-output ratio

as a function of r, both in levels and in annual growth rates. When the rigidity parameter

is approximately 0.993, the correlations are negligible, while for higher rigidities, the labor

wedge tends to be low when employment is above trend or the consumption-output ratio is

above trend.

To explore the behavior of extreme values of the wage rigidity parameter more seriously,

I set r = 0.993. Table 4.3 shows the comovements of the variables in this case; the behavior

in annual growth rates is similar. Not surprisingly, more wage rigidity increases the volatility

of the recruiter-unemployment ratio and makes employment two-thirds as volatile as output.
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Figure 4.1: Model with capital and rigid wages (r = 0.95), deterministic trend. Response
to a 2.5 percent increase in productivity at t = 0. All variables are expressed as deviation
from trend in log points. The blue dots show µ̄ = 2.32 and the red lines show more frictions,
µ̄ = 1.
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Figure 4.2: Model with capital and rigid wages, deterministic trend. Correlation between the
labor wedge, employment, and the consumption-output ratio for various values of the wage
rigidity parameter r. The top graph shows correlations between levels and the bottom shows
correlations between annual growth rates.
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 0.600 26.902 0.912 0.663 0.114 0.643 0.114 0.501

ỹ 1 0.788 0.735 0.636 0.763 -0.749 -0.819 0.280 0.990

c̃ — 1 0.188 0.975 0.206 -0.453 -0.293 0.681 0.817

θ — — 1 -0.033 0.954 -0.838 -0.967 -0.131 0.719

k̃ — — — 1 -0.006 -0.276 -0.079 0.727 0.67

Correlations n — — — — 1 -0.673 -0.994 -0.309 0.708

wn/y — — — — — 1 0.742 -0.417 -0.807

c/y — — — — — — 1 0.2 -0.777

τ̂ — — — — — — — 1 0.398

s — — — — — — — — 1

Table 4.3: Model with capital and rigid wages (r = 0.993), deterministic trend. Co-
movements of variables in an infinite sample.

On the other hand, the increase in wage rigidity substantially reduces the volatility of the

labor wedge. This is because employment and the consumption-output ratio are nearly

equally volatile and very strongly negatively correlated. In contrast, the data in Table A.1

indicate that while employment and the consumption-output ratio are equally volatile, their

correlation is only −0.6 and so the labor wedge is in fact more volatile than either of these

components. It is also worth noting that the increase in wage rigidity dampens fluctuations

in the labor share wn/y, compared to Table 4.1. While this calibration is not an unqualified

success, it certainly shows that the model can generate extreme volatility in recruiting effort

and a negative correlation between employment and the labor wedge without substantially

altering the comovement of other variables, e.g. the joint behavior of output, consumption,

and capital, as summarized in Table 3.3.

4.3.7 Productivity Shocks: Stochastic Trend

I obtain similar results with a stochastic trend in productivity, so log z({st, st+1}) = log z(st)+

st+1 where st follows a stationary first order Markov process. As usual, I look for an

equilibrium where an appropriately scaled version of consumption and wages are station-

ary when growth is stochastic. Define relative consumption, capital, actual wages, and

target wages as c̃(st) ≡ c(st)z(st)
−1

1−α , k̃(st) ≡ k(st)z(st)
−1

1−α , w̃(st) ≡ w(st)z(st)
−1

1−α , and

w̃∗(st) ≡ w∗(st)z(st)
−1

1−α . Similarly, since employment and the share of recruiters in employ-

ment are constant along a balanced growth path, I look for an equilibrium of the stochastic

growth model where these variables are stationary.
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Following the same argument as in the flexible wage model, replace qt(s
t+1) in equation (4.21)

using equation (4.16) to obtain

1 = β
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)
e−

st+1

1−α



α

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α−1

+ 1 − δ



 .

(4.34)

Similarly eliminate Jn between equations (4.19) and (4.20):

(1 − α)

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

= βµ(θ(st))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

×
(

(1 − α)

(

k̃(st+1)

n(st+1) − θ(st+1)(1 − n(st+1))

)α
(

1 +
1 − x

µ(θ(st+1))

)

− w̃(st+1)

)

. (4.35)

The target wage equation (4.28) becomes

w̃∗(st) = φ(1 − α)

(

k̃(st)

n(st) − θ(st)(1 − n(st))

)α

(1 + θ(st)) + (1 − φ)
γc̃(st)

1 − τ

+ β(1 − x− f(θ(st)))
∑

st+1|st

π(st+1|st)
c̃(st)

c̃(st+1)

(

w̃∗(st+1) − w(s̃t+1)
)

. (4.36)

The state equations (4.24) and (4.26) reduce to

k̃(st+1)e
st+1

1−α = k̃(st)α
(

n(st) − θ(st)(1 − n(st))
)1−α

+ (1 − δ)k̃(st) − c̃(st) (4.37)

and

w̃(st) = rw̃(st−1)e
s̄−st
1−α + (1 − r)w̃∗(st). (4.38)

Equation (4.23) for the employment rate is unchanged.

My calibration follows the flexible price version of the model in Section 3.2.7. In particular,

I still set s̄ = 0.0012, ρ = 0.4, and ς = 0.00325, where st+1 = s̄ + ρ(st − s̄) + ςυt+1. I again

initially set the wage rigidity parameter at r = 0.95. The other parameters are unchanged.
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I start by reporting the equilibrium policy functions:

log θ = log 0.078 + 81.417(s− 0.0012) − 0.630(logn− log 0.95)

+ 10.441(log k̃ − log 218.2) − 38.184(log w̃−1 − log 4.017),

log c̃ = log 4.696 + 0.436(s− 0.0012) + 0.014(logn− log 0.95)

+ 0.607(log k̃ − log 218.2) − 0.023(log w̃−1 − log 4.017),

log w̃∗ = log 4.017 + 5.096(s− 0.0012) − 0.215(logn− log 0.95)

+ 1.146(log k̃ − log 218.2) − 2.321(log w̃−1 − log 4.017).

An increase in the productivity growth rate raises recruiting, consumption, and the target

wage on impact. These findings are qualitatively unchanged from the flexible wage model,

although the response of the recruiter-unemployment ratio is 68 times larger. The responses

of the equilibrium policies to the three state variables are unchanged from the case with a

deterministic trend and the interpretation is likewise unaltered.

I turn next to the state equations:

log n+1 = log 0.95 + 1.384(s− 0.0012) + 0.309(logn− log 0.95)

+ 0.178(log k̃ − log 218.2) − 0.649(log w̃−1 − log 4.017),

log k̃+1 = log 218.2 − 0.612(s− 0.0012) + 0.019(logn− log 0.95)

+ 0.990(log k̃ − log 218.2) + 0.003(log w̃−1 − log 4.017),

log w̃ = log 4.017 − 1.163(s− 0.0012) − 0.011(logn− log 0.95)

+ 0.057(log k̃ − log 218.2) + 0.834(log w̃−1 − log 4.017).

An increase in productivity growth raises employment but lowers capital and actual wages rel-

ative to trend. The increase in employment reflects the surge in the recruiter-unemployment

ratio, while the decline in capital is a consequence of rising interest rates that encourage

current consumption at the expense of investment. The relative wage falls for mechanical

reasons: when productivity growth increases, the actual wage cannot keep up because of the

wage rigidity. The response of employment, capital, and wages to each other are unchanged

from the model with a deterministic trend. It follows that three of the eigenvalues are un-

changed as well, while the fourth, the one associated with the exogenous shock, declines to

0.4.

Table 4.4 shows the comovement of variables in an infinite sample, comparable to Ta-

ble 3.5. The standard deviation of employment and the recruiter-unemployment ratio in-

crease by a factor of 9. Moreover, the correlation between employment and the labor wedge
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 1.727 83.803 2.944 1.998 0.867 1.787 1.238 0.565

ỹ 1 0.228 0.497 0.186 0.645 -0.535 -0.339 -0.827 0.097

c̃ — 1 -0.403 0.988 -0.569 0.295 0.839 -0.437 0.073

θ — — 1 -0.523 0.853 -0.993 -0.668 -0.619 0.702

k̃ — — — 1 -0.625 0.423 0.851 -0.329 -0.076

Correlations n — — — — 1 -0.810 -0.911 -0.449 0.229

wn/y — — — — — 1 0.584 0.697 -0.750

c/y — — — — — — 1 0.040 0.016

τ̂ — — — — — — — 1 -0.591

s — — — — — — — — 1

Table 4.4: Model with capital and rigid wages (r = 0.95), stochastic trend. Co-movements
of variables in an infinite sample.

is reversed, falling from 0.97 in the flexible wage model to -0.45 here. Similarly, the correla-

tion of the consumption-output ratio with the labor wedge rises from −1.00 to 0.04. Table 4.5

shows the corresponding annual growth rates. The conclusions are similar. The model does

have some counterfactual predictions, however, including the negative correlation between

detrended employment and detrended consumption or capital.

Figure 4.3 shows the impulse response to a one time increase in productivity growth.

Recall that this figure shows the behavior of variables in levels, not relative to current pro-

ductivity, making it easier to interpret the behavior of nonstationary variables like output,

consumption, and capital. I find that an increase in the productivity growth rate leads

to an immediate increase in consumption and an even larger increase in output. Thus

the consumption-output ratio falls upon the impact of the shock before slowly reverting to

trend. Since wages are slow to respond to the shock, employment and recruiting also increase

strongly before reverting slowly back to their normal level. The amplification compared to

the flexible wage model in Figure 3.2 is clear.

One might expect wage rigidities to create sharp movements in the labor share, but in fact

the changes are fairly modest. The labor share falls by −0.2 percent on the impact of this large

increase in productivity growth. This reflects the boom in output with fixed employment

and rigid wages. As employment starts to grow, the labor share quickly recovers, following a

nonmonotonic pattern back to steady state. This observation is important for microeconomic

studies that attempt to assess the extent of wage rigidity by directly comparing the behavior

of wages and labor productivity (e.g. Pissarides, forthcoming; Haefke, Sonntag, and van Rens,
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Figure 4.3: Model with capital and rigid wages (r = 0.95), stochastic trend. Response to an
increase in the productivity growth rate at t = 0. All variables are expressed as deviation
from initial trend in log points. The blue dots show µ̄ = 2.32 and the red lines show more
frictions, µ̄ = 1.
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ỹ c̃ θ k̃ n wn/y c/y τ̂ s
Relative s.d. 1 0.790 88.160 1.273 2.071 0.942 1.559 1.210 0.667

ỹ 1 -0.510 0.743 -0.654 0.969 -0.707 -0.900 -0.748 0.108

c̃ — 1 -0.191 0.922 -0.628 0.133 0.834 0.002 0.445

θ — — 1 -0.541 0.807 -0.998 -0.573 -0.965 0.717

k̃ — — — 1 -0.803 0.493 0.887 0.347 0.066

Correlations n — — — — 1 -0.770 -0.940 -0.751 0.169

wn/y — — — — — 1 0.521 0.970 -0.756

c/y — — — — — — 1 0.481 0.156

τ̂ — — — — — — — 1 -0.736

s — — — — — — — — 1

Table 4.5: Model with capital and rigid wages (r = 0.95), stochastic trend. Co-movements
of annual growth rates in an infinite sample.

2008). The labor share is the ratio of the wage w to the measured average product of labor

y/n. The finding that the labor share declines only modestly during an expansion implies that

labor productivity rises only slightly more than wages following an increase in productivity

growth. This small gap may be difficult to discern using the best available microeconomic

data, and so a failure to observe greater volatility of labor productivity than wages may say

little about the relevance of wage rigidities for labor market fluctuations.

I again explore the role of the wage rigidity parameter r by graphing the correlations

between the labor wedge, employment, and the consumption-output ratio as a function of

r in Figure 4.4. Compared to the version of the model with a deterministic trend, I find

less need for an extreme value of this parameter. Indeed, to match the slightly negative

correlation between the labor wedge and both employment and the consumption-output

ratio, I can allow for even smaller values of r.

4.3.8 Evaluation

These experiments help to illustrate the ability of wage rigidities to moderate the gap between

model and data, but they are not definitive. As I have emphasized, the extent of wage

rigidity, r, is a free parameter. One might try to use economic theory to determine its value.

In Chapter 5, I briefly discuss some efforts in this direction, including Hall and Milgrom

(2008) and Gertler and Trigari (forthcoming).

A related issue is that the required amount of wage rigidity may depend on the nature of

shocks hitting the economy. I have argued that the flexible wage economy cannot match the
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Figure 4.4: Model with capital and rigid wages, stochastic trend. Correlation between the
labor wedge, employment, and the consumption-output ratio for various values of the wage
rigidity parameter r. The top graph shows correlations between levels and the bottom shows
correlations between annual growth rates.
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behavior of the labor wedge regardless of the nature of shocks, e.g. productivity or government

spending, aggregate or reallocational. It is conceptually straightforward to introduce these

types of shocks into the rigid wage model. In preliminary research that I do not report

here, I find that with different sources of shocks, a different wage rigidity parameter may be

necessary to explain the observed comovement of aggregate variables. Certainly one should

be cautious in any attempt to identify the value of r from the response of the aggregate

variables to productivity shocks.

But the bottom line is that, while wage rigidity may be important for understanding the

cyclical behavior of the labor market, it is hard to measure. I close the book with an effort

to sidestep this question, asking whether the model has additional restrictions that hold

regardless of the true value of r and regardless of the nature of shocks hitting the economy.

Following Hall (2009), I tentatively conclude in the next section that it does.

4.4 Using Hours Data to Test the Model

The tenet of the rigid wage model is that, within the interval of wages that firms are willing

to pay and that workers are willing to accept, there is no good reason to predict which wage

will be set in equilibrium. The actual wage that will be paid depends on details of wage

negotiations between workers and firms. But while this choice does not affect the survival

of existing employment relationships, it does affect firms’ willingness to recruit, thereby

changing the unemployment rate.

Despite this indeterminacy, Hall (2009) argues that a search model with rigid wages makes

some predictions about the comovement of the consumption-output ratio and hours worked,

at least in an environment where the number of hours worked per employed worker, h(st), is

endogenous. Matched workers and firms should agree on a joint surplus maximizing level of

hours and use other elements of the wage contract to divide the gains from trade. This idea

puts some discipline on the model’s predictions.

To be concrete, suppose that a worker’s income is linear in her hours worked, w0(s
t) +

w1(s
t)h(st). Workers and firms bargain efficiently over the marginal wage w1(s

t) and hours

worked h(st), but I will be deliberately vague about how the fixed component of wages w0(s
t)

is set. Efficient bargaining over the marginal wage and hours ensures that workers’ and firms’

choice of hours maximizes the joint gains from trade, a prediction that I show has empirical

content.

More precisely, I flesh out the details of this model and prove that it is mathematically

equivalent to a frictionless one in which workers have a finite elasticity of hours supply but

an infinite elasticity of labor supply. In other words, a search model with rigid wages can
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potentially explain why it looks as if workers are willing to accept substantial variation in

employment over the business cycle, even though in reality the elasticity of labor supply is

not large.

4.4.1 Households

I assume throughout this section that the marginal utility of consumption may differ for

employed and unemployed workers. The period utility function of a typical household member

is
c1−σ

(

1 + (σ − 1) γε
1+ε

h
1+ε

ε

)σ − 1

1 − σ

if she consumes c and is employed for h hours. It is

c1−σ − 1

1 − σ

if she is unemployed. A representative household decides how much each of its members may

consume in order to maximize the sum of utilities of its members, acting as if it has utility

function

∞
∑

t=0

∑

st

βtΠ(st)

(

ce(s
t)1−σ

(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε

)σ − 1

1 − σ
n(st) +

cu(s
t)1−σ − 1

1 − σ
(1 − n(st))

)

,

(4.39)

where ce(s
t) is the consumption of each employed household member and cu(s

t) is the con-

sumption of each unemployed household member in history st.

The household faces a single lifetime budget constraint, that initial assets must be equal

to the difference between the present value of consumption and the present value of after-tax

labor income plus transfers,

a0 =
∞
∑

t=0

∑

st

q0(s
t)
(

c(st) − (1 − τ)
(

w0(s
t) + w1(s

t)h(st)
)

n(st) − T (st)
)

, (4.40)

where c(st) ≡ ce(s
t)n(st) + cu(s

t)(1 − n(st)) is total consumption. As discussed before, I

assume that a worker who works for h(st) hours in history st earns pre-tax income w0(s
t) +

w1(s
t)h(st). In addition, employment is determined by the law of motion

n(st+1) = (1 − x)n(st) + f(θ(st))(1 − n(st)) (4.41)

for all st+1 = {st, st+1}. The household chooses {ce(st), cu(s
t)} to maximize equation (4.39)

subject to equation (4.40) and equation (4.41), taking as given initial assets a0, bargained
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hours {h(st)}, prices {w0(s
t), w1(s

t), q0(s
t)}, taxes τ , and transfers {T (st)}.

Focus temporarily on the choice of consumption for each employed and unemployed mem-

ber. Combining the first order conditions with the definition of total consumption, I obtain

ce(s
t) =

c(st)
(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε

)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)
and

cu(s
t) =

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)
.

Substituting this into the utility function equation (4.39) gives

∞
∑

t=0

∑

st

βtΠ(st)
c(st)1−σ

(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)
)σ − 1

1 − σ
, (4.42)

so the household chooses total consumption {c(st)} to maximize this expression subject to

equation (4.40) and equation (4.41), taking as given initial assets a0, bargained hours {h(st)},
prices {w0(s

t), w1(s
t), q0(s

t)}, taxes τ , and transfers {T (st)}.
Now let V (st, a, n) denote the value of a household with assets a and n employed workers

in history st. This solves

V (st, a, n) = max
{a(st+1)}

(

c1−σ
(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)
)σ − 1

1 − σ

+ β
∑

st+1|st

Π(st+1)

Π(st)
V
(

st+1, a(st+1), n′
)

)

, (4.43)

where c satisfies the intertemporal budget constraint,

c = a + (1 − τ)
(

w0(s
t) + w1(s

t)h(st)
)

n+ T (st) −
∑

st+1|st

qt(s
t+1)a(st+1),

and next period’s employment is determined from current employment and unemployment

as

n′ = (1 − x)n+ f(θ(st))(1 − n).

As usual, the first order condition for next period’s assets and the envelope condition for

current assets yield the Euler equation,

qt(s
t+1) = β

Π(st+1)

Π(st)

(

c(st)
(

1 + (σ − 1) γε
1+ε

h(st+1)
1+ε

ε n(st+1)
)

c(st+1)
(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)
)

)σ

. (4.44)
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The envelope condition for employment is

Vn(s
t, a(st), n(st)) =

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)−σ

(1 − τ)
(

w0(s
t) + w1(s

t)h(st)
)

−
(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)1−σ

σ
γε

1 + ε
h(st)

1+ε
ε

+ β
(

1 − x− f(θ(st))
)

∑

st+1|st

Π(st+1)

Π(st)
Vn

(

st+1, a(st+1), n(st+1)
)

. (4.45)

Also let Ṽn(st, w1, h) denote the marginal value to the household with the equilibrium level

of assets and employment of having a worker employed at an arbitrary hourly wage w1 and

working an arbitrary number of hours h, rather than be unemployed in history st. This

notation suppresses the fixed component of wages. This solves

Ṽn(s
t, w1, h) =

γσε

1 + ε

(

h(st)
1+ε

ε − h
1+ε

ε

)

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)1−σ

+ (1 − τ)
(

w1h− w1(s
t)h(st)

)

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)−σ

+ Vn(st, a(st), n(st)). (4.46)

The first term is the utility benefit of any reduction in hours of work. The second term is the

utility value of the after-tax income generated by a worker employed at (w1, h) rather than at

the equilibrium marginal wage-hour pair (w1(s
t), h(st)). The third term is the marginal value

of having the worker employed at the equilibrium wage and hours rather than unemployed.

4.4.2 Firms

A representative firm employs n0 = n(s0) workers and owns capital k0 = k(s0) at time 0.

In history st, it assigns a fraction ν(st) of its n(st) workers to recruiting and the remaining

n(st)(1 − ν(st)) workers to production. Each worker works h(st) hours. The producers

use the capital k(st) to generate output z(st)k(st)α
(

h(st)n(st)(1 − ν(st))
)1−α

. The single

produced good is used both for consumption and for investment. A fraction δ of the capital

depreciates during production. The recruiters each attract h(st)µ(θ(st)) workers to the firm,

while a fraction x of the workers leave the firm, thus determining n(st+1). Finally, the firm

can freely buy or sell capital in history st, determining k(st+1).
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Writing this formally, the firm’s value in history s0 with n0 workers and capital k0 is

J(s0, n0, k0) =
∞
∑

t=0

∑

st

q0(s
t)
(

z(st)k(st)α
(

h(st)n(st)(1 − ν(st))
)1−α

+ (1 − δ)k(st) − k(st+1) −
(

w0(s
t) + w1(s

t)h(st)
)

n(st)
)

, (4.47)

so flow profits is the sum of output and undepreciated capital minus the cost of new capital

and the wage bill. Firm growth satisfies

n(st+1) = n(st)
(

h(st)ν(st)µ(θ(st)) + 1 − x
)

, (4.48)

where st+1 = {st, st+1}. The firm chooses its capital stock k(st) and the allocation of work-

ers to recruiting ν(st) to maximize profits in equation (4.47) subject to the law of mo-

tion for employment in equation (4.48), taking as given bargained hours {h(st)} and prices

{w0(s
t), w1(s

t), q0(s
t)}.

Let J(st, n, k) denote the value of a firm that starts history st with n workers and k units

of capital. The value function satisfies the recursive equation

J(st, n, k) = max
ν,k′

(

z(st)kα
(

h(st)n(1 − ν)
)1−α

+ (1 − δ)k − k′ − n
(

w0(s
t) + w1(s

t)h(st)
)

+
∑

st+1|st

qt(s
t+1)J

(

st+1, n
(

νh(st)µ(θ(st)) + 1 − x
)

, k′
)

)

. (4.49)

Assuming an interior solution for the share of recruiters ν, I obtain the first order condition

(1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α

= µ(θ(st))
∑

st+1|st

qt(s
t+1)Jn

(

st+1, n(st+1), k(st+1)
)

.

(4.50)

The left hand side is the marginal product of an hour of production labor. The right hand

side is the expected value of the additional workers attracted by an hour of recruiting labor.

Also write the envelope condition for employment as

Jn(s
t, n(st), k(st)) = (1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α

h(st)(1 − ν(st))

−
(

w0(s
t) + w1(s

t)h(st)
)

+
(

ν(st)h(st)µ(θ(st)) + 1 − x
)

∑

st+1|st

qt(s
t+1)Jn

(

st+1, n(st+1), k(st+1)
)

.
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Eliminate the continuation value using equation (4.50) to obtain

Jn(s
t, n(st), k(st)) = (1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α(

h(st) +
1 − x

µ(θ(st))

)

−
(

w0(s
t) + w1(s

t)h(st)
)

. (4.51)

The value of employing an additional worker is the sum of the worker’s marginal product as

a producer and the marginal product of the workers who are released from recruiting because

of the worker’s presence, minus the wage.

Next turn to the first order condition for next period’s capital stock,

1 =
∑

st+1|st

qt(s
t+1)Jk

(

st+1, n(st+1), k(st+1)
)

.

Purchasing a unit of capital reduces current profit by 1. This must equal the increase in the

continuation value of the firm. The envelope condition for capital is

Jk(s
t, n(st), k(st)) = αz(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α−1

+ 1 − δ.

Evaluate this condition in history st+1 and substitute into the first order condition for next

period’s capital to get

1 =
∑

st+1|st

qt(s
t+1)

(

αz(st+1)

(

k(st+1)

h(st+1)n(st+1)(1 − ν(st+1))

)α−1

+ 1 − δ

)

. (4.52)

This ensures that firms are willing to invest in capital, so the cost of capital this period is

equal to net marginal product of capital next period.

Finally, compute the marginal profit of employing a worker at an arbitrary marginal wage

w1 for an arbitrary number of hours h in history st and the equilibrium wage thereafter, rather

than losing the worker. For a firm with the equilibrium level of employment n(st) and capital

k(st), this is

J̃n(s
t, w1, h) = (1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α

(h− h(st))

+ (w1(s
t)h(st) − w1h) + Jn(st, n(st), k(st)). (4.53)

The first term is the change in output, the marginal product of labor times the change in

hours. The second term is the change in the wage bill. The final term is the value of a worker
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at the equilibrium wage and hours.

4.4.3 Wage Setting and the Labor Wedge

The key assumption is that workers and firms bargain over the marginal wage and hours,

satisfying the Nash bargaining procedure:

(w1(s
t), h(st)) = arg max

w1,h
Ṽn(st, w1, h)

φJ̃n(st, w1, h)
1−φ. (4.54)

I do not, however, put any restrictions on the base wage w0(s
t).

Using equations (4.46) and (4.53), the first order condition of equation (4.54) for the

marginal wage evaluated at (w1(s
t), h(st)) is

φ

Vn(st, a(st), n(st))
(1 − τ)

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)−σ

=
1 − φ

Jn(st, n(st), k(st))
. (4.55)

The same equations imply that the first order condition for the choice of hours evaluated at

(w1(s
t), h(st)) is

φ

Vn(st, a(st), n(st))

(

γσh(st)
1

ε

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)1−σ

− (1 − τ)w1(s
t)

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)−σ)

=
1 − φ

Jn(st, n(st), k(st))

(

(1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α

− w1(s
t)

)

.

Eliminate Vn from this expression using the previous one:

γσh(st)
1

ε

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)

= (1 − τ)(1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α

. (4.56)

The marginal wage w1(s
t) then determines how those gains are split.

To reinterpret equation (4.56), I write down the monetary gains from trade at an arbitrary

wage (w0, w1) and hours h. This is the sum of the after-tax value of a job to a firm and the

marginal value of an additional employed worker in the household, evaluated (for expositional
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convenience only) in units of goods rather than utility:

(1 − τ)J̃n(st, w1, h) + Ṽn(st, w1, h)

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)σ

.

Now suppose hours worked maximizes this joint gains from trade. Using equations (4.46)

and (4.53) to eliminate Ṽn and J̃n, I find that hours worked must maximize

(1 − τ)(1 − α)z(st)

(

k(st)

h(st)n(st)(1 − ν(st))

)α

(h− h(st))

+
γσε

1 + ε

(

h(st)
1+ε

ε − h
1+ε

ε

)

(

c(st)

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)

)

.

But taking the necessary and sufficient first order condition with respect to h and evaluating

at h = h(st), I obtain equation (4.56). Thus hours worked maximizes the joint gains from

trade, generalizing one of the conclusions from Section 2.4.2 to this environment.

I use the insight that hours are chosen to maximize the gains from trade to obtain an

expression for the labor wedge. Let

y(st) ≡ z(st)k(st)α
(

h(st)n(st)(1 − ν(st))
)1−α

denote aggregate output. Then rewrite equation (4.56) as

τ = 1 − γσ
(

(1 − ν(st))c(st)/y(st)
)

h(st)
1+ε

ε n(st)

(1 − α)
(

1 + (σ − 1) γε
1+ε

h(st)
1+ε

ε n(st)
)
. (4.57)

This is analogous to equation (1.14) in the frictionless model with nonseparable preferences.

There are only two differences. First, there is no analog of the share of producers 1 − ν(st)

in the frictionless model. With search frictions, measured production only accounts for a

fraction 1 − ν(st) of output; the remaining output is the unmeasured investment in future

hiring through recruiting. Thus total (measured and unmeasured) output is y(st)/(1−ν(st))

and so (1 − ν(st))c(st)/y(st) measures the ratio of consumption to total output.

Second, in the frictionless model, the labor supply elasticity ε governed the entire hours

choice; there was no distinction between hours per worker and the employment-population

ratio. With search frictions, the labor supply elasticity governs the choice of hours per worker,

but the model behaves as if the elasticity for the employment-population ratio is infinite.

Quantitatively, the first difference between the two equations is likely to be small. In my

baseline calibration, a fraction ν = 0.004 of workers are recruiters while the remainder are
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producers. Even if ν doubles during a boom, this reduces 1 − ν from 0.996 to 0.992. From

equation (4.57), this scarcely affects the labor wedge.

The second difference is much more significant and suggests a testable implication. Sup-

pose that by varying w0(s
t) appropriately, I can perfectly match the empirical behavior of

the employment rate n(st). Equation (4.57) shows that the model still makes predictions

about the comovement of employment, the consumption-output ratio, and hours per em-

ployed worker, each of which can be measured in the data. For example, fix the labor supply

elasticity at ε = 1 and the capital share at α = 1/3. For different values of the complemen-

tarity parameter σ, I set γ(1− ν) so that the labor wedge is equal to 0.4 on average.1 I then

use data on the consumption-output ratio c(st)/y(st), on hours per employed worker h(st),

and on employment n(st) to compute the right hand side of equation (4.57).2

Figure 4.5 shows the results, expressed as deviations from log trend, for three different

values of σ. The results are relatively insensitive to the exact choice of σ, although fluctuations

are somewhat smaller when σ is larger. The figure shows a significant increase in the labor

wedge during all but one of the post-war recessions; however, comparing the magnitude of

the increases with the analogous numbers from the frictionless model, it is clear that the

search model reduces the extent of the anomalies.

For example, the standard deviation of the detrended labor wedge in the rigid wage model,

measured by equation (4.57), with ε = 1 and σ = 2 is 1.5 percent. The standard deviation

of the annual growth rate is 2.3 percent. If I measure the labor wedge using the frictionless

model, equation (1.12), with ε = ∞, the standard deviation of the detrended wedge is 1.4

percent and the standard deviation of the annual growth rate is 2.2 percent. Effectively, the

search model with rigid wages and a relatively small labor supply elasticity behaves similarly

to a frictionless model with an infinite labor supply elasticity. Figure 4.6 displays this point

graphically.

This figure does not prove that wage rigidity is important for understanding the behavior

of the labor market at business cycle frequencies. It does, however, suggest that the models

of wage rigidity can be tested using the same approach that is effective in evaluating both the

frictionless model and the flexible wage model. Obviously hours of work is only one margin

chosen by matched workers and firms, so the general approach suggested by Hall (2009) and

outlined here may yet yield additional predictions.

1This approach ignores fluctuations in the share of recruiters ν(st). In principle, one could deduce these
from the behavior of employment, for example using equation (4.48). As I discussed above, these movements
are unlikely to be quantitatively significant and so I ignore them here.

2I use data on hours and employment from Prescott, Ueberfeldt, and Cociuba (2008).
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Figure 4.5: The deviation of the labor wedge from log trend, HP filter with parameter 1600,
using equation (4.57). The dotted green line shows σ = 1, the dashed red line shows σ = 2,
and the solid blue line shows σ = 4. In each case I set ε = 1 and α = 1/3 and fix the
remaining parameter γ(1 − ν) to ensure that the average labor wedge is 0.40. The gray
bands show NBER recession dates.
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Figure 4.6: The deviation of the labor wedge from log trend, HP filter with parameter 1600.
Both lines set α = 1/3. The dashed red line shows the rigid wage model with ε = 1 and
σ = 2, measuring the labor wedge using equation (4.57). The solid blue line shows the
frictionless model with ε = ∞ and σ = 1, measuring the labor wedge using equation (1.12).
The gray bands show NBER recession dates.



Chapter 5

Looking Ahead

My goal throughout this book has been to present an internally-consistent model which can

help to explain the observed cyclical behavior of the United States labor market. I end this

book on a more speculative note, conjecturing how this research agenda might continue to

progress. I point to some recent theoretical research that provides a better foundation for

why wages are rigid, and some recent empirical research that uses microeconomic data to

assess the extent of wage rigidity. I discuss some of my own research that questions whether

the matching function approach that I use throughout this book is the most useful one for

understanding why there is unemployment. Finally, I ask whether the indeterminacy that I

highlighted in Chapter 4 might be relevant in other parts of the economy.

5.1 Theories of Rigid Wages

The theory of wage rigidity that I develop in Chapter 4 is admittedly ad hoc, which is

unsatisfactory both from an aesthetic and a pragmatic perspective. One would like to use a

model like this not only to understand why unemployment is volatile and persistent, but also

to ask whether policies can and should affect this behavior. But, for example, to understand

whether tax cuts will reduce unemployment, one needs to know whether it is pre- or post-tax

wages that are rigid. If it is the pre-tax wage, then the nature of a tax change determines its

incidence. For example, a switch from a payroll tax paid by employers to an income tax paid

by employees will reduce firms’ labor costs and workers’ take-home pay, encouraging firms to

recruit more workers. A rigidity in the post-tax wage leaves less latitude for such a simple

policy to have real effects.

Similarly, to understand how monetary policy affects the labor market, one needs to know

whether it is real or nominal wages that are rigid. Although the model in this book is entirely

real, it seems straightforward to extend it to introduce money and to impose that wages that

151
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are set in terms of this unit of account. Then an increase in inflation will depress real wages,

putting downward pressure on the unemployment rate. But if it is real wages that are rigid,

monetary policy will have no direct impact on labor market outcomes.1

To address these questions from a theoretical perspective, we need to understand at a

more primitive level why wages are rigid. Some existing papers offer a promising start on

this research agenda. Hall and Milgrom (2008) suggest that the problem with flexible wage

models similar to the ones I analyze is Chapters 2 and 3 lies not in the Nash bargaining

solution per se, but rather in the assumption that if a worker and firm fail to reach an

agreement, their match ends. Following Binmore, Rubinstein, and Wolinsky (1986), they

consider a strategic bargaining game between a matched worker and firm. In each period,

one of the parties makes a wage offer to the other. If the offer accepted, output is produced

and the worker receives the bargained wage. If it is rejected, the other party may make a

counteroffer after some specified delay. While they wait, both the worker and firm receive

some payoff that reflects the cost of bargaining.

In this situation, the relevant threat point may be disagreement, rather than match dis-

solution. This is important because they assume that the value of disagreement fluctuates

less at business cycle frequencies than does the value of an unemployment worker. Put differ-

ently, an important source of the procyclical real wage in Chapter 3 comes from endogenous

procyclicality in the marginal value of an unemployed worker. By shutting this margin down,

Hall and Milgrom (2008) find that the model can generate significantly larger fluctuations

in the unemployment rate in response to productivity shocks. Although there are important

differences between their framework and mine—they assume linear utility and no capital,

and they focus on comparative statics—it seems likely that their insight carries over to my

framework as well.

Gertler and Trigari (forthcoming) propose instead that wages are rigid because workers

and firms only periodically negotiate, bargaining so as to satisfy the Nash solution and fixing

the wage until the next opportunity to renegotiate. Crucially the negotiated wage applies not

only to the firm’s existing workers, but also to any new workers it might hire. Thus firms that

last negotiated their wage prior to an adverse productivity shock will have little incentive

to recruit new workers following the shock. Essentially this provides a deeper theory of why

wages may be backward looking, something I simply imposed in Chapter 4.

Once one admits that the Nash bargaining solution is ad hoc, the number of alternative

bargaining procedures is vast. It is still unclear whether economic theory provides much

guidance as to which theories are more acceptable. One promising idea might be to discipline

1Monetary policy may still have real effects, for example due to sticky prices. Trigari (2009) develops a
model that integrates sticky prices and equilibrium unemployment.
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the model by adding more microeconomic structure to it. That is, in the model I use in this

book and the models in Hall and Milgrom (2008) and Gertler and Trigari (forthcoming), all

worker-firm matches are identical, producing equally much output. Although this abstraction

is useful for some purposes, it may be overly simplistic. It seems likely that some matches

are highly productive while others are much more marginal, as in Pissarides (1985) and

Mortensen and Pissarides (1994). This heterogeneity, together with the requirement that

workers and firms exploit all the bilateral gains from trade, may be useful for ruling out

some paths of aggregate wages. Careful attention to incentive issues within the employment

relationship may similarly provide important discipline for predicted wage behavior. Older

research by Gomme (1999) and Alexopoulos (2004), as well as new work by Tawara (2008),

are useful steps in this direction.

5.2 Empirical Evidence on Rigid Wages

Another interesting line of work measures the extent of wage rigidity. In Shimer (2004) I

argued that the important empirical question for the behavior of a search model was not how

rigid wages are for the average worker, but rather how rigid they are for newly employed

workers. Pissarides (forthcoming) and Haefke, Sonntag, and van Rens (2008) investigate this

issue and cannot reject the null hypothesis that wages for new employees are as flexible as

productivity. While this finding is provocative, I stressed in Chapter 4 that measured wages

need not be much more rigid than measured labor productivity in order for the model to gen-

erate significant fluctuations in employment and a negative correlation between employment

and the labor wedge. Given the small data sets that these papers use, it appears that they

are also unable to reject other interesting hypotheses, for example that wages are sufficiently

rigid so as to generate significant fluctuations in aggregate employment.

Fortunately it may be possible to address this problem with more data. In a number of

European countries, vast data sets record a panel of workers’ earnings over long periods of

time. In some countries, coverage is nearly universal. Similar microeconomic data exist for

some states in the United States as part of the Longitudinal Employer-Household Dynamics

program. By looking at workers who switch employers, perhaps after an intervening unem-

ployment spell, it may be possible to tell whether monthly or quarterly earnings are more

rigid than is predicted by the benchmark search model. Still, this approach of confronting

the model with data may run into problems. For example, the productivity of newly hired

workers need not be the same as the productivity of existing employees, a possibility that

Eyigüngör (2008) stresses for a different reason in the context of a vintage capital model with

search frictions. Since marginal productivity is even harder to measure than wages, it is still
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unclear whether this issue can be addressed empirically.

5.3 Alternatives to the Matching Function

Another way to make progress on whether and why wages are rigid may be to rethink the

other departure from the competitive model in Chapter 1, the assumption that an aggregate

matching technology governs how recruiters and unemployed workers generate new matches.

One alternative is the Lucas and Prescott (1974) “islands” framework. That paper assumes

that workers and firms are located in local labor markets, with many workers and many

firms in each. Labor markets are subject to idiosyncratic productivity shocks, which induce

workers to switch markets. While there is perfect competition within a labor market, it takes

time to switch markets, generating unemployment. In recent research, Alvarez and Shimer

(2009) argue that unemployment may also arise because workers prefer the option value of

waiting without a job in a labor market, rather than paying the cost of moving to a new one.

As in the original Lucas and Prescott (1974) model, Alvarez and Shimer (2009) assume

that there are many workers and jobs within a labor market and so competitive forces deter-

mine wages. Although perfect competition eliminates any scope for the type of wage rigidity

that I have analyzed here, reality may be more complex. For example, in a related model

(Shimer, 2007a), I focus on indivisibilities in the number of workers and jobs in a local labor

market. Wages are determined by the short side of the market, with the long side of the

market suffering either unemployment (workers) or vacancies (jobs). With strictly positive

probability, however, the number of workers and jobs in a market is equal. In such a situa-

tion, any wage in an interval clears the labor market, a form of indeterminacy. Although the

level of the wage is unimportant for the static equilibrium within a market, it is important

for firms’ incentives to create jobs, much like in Chapter 4. This gives enough latitude for a

limited amount of wage rigidity, which may have important consequences for unemployment

fluctuations.

Ebrahimy and Shimer (2009) encounter a similar issue in a related model, where the ability

of workers and jobs to match depends on an idiosyncratic shock. When one worker can take

two or more available jobs or one job can be filled by two or or more unemployed workers,

competitive forces naturally determine wages. But when a single unemployed worker only

has one job opportunity and that job can only hire this particular worker, economic theory

provides little guidance as to how wages are set. Again this creates the possibility of a limited

amount of wage rigidity.

Broadly speaking, careful attention to how a worker’s human capital affects the jobs

that she can accept gives additional structure to the economic environment. Relative to the
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model I have studied in this book, the possibility of wage rigidity in an environment without

a matching function may be somewhat more limited, but it does not disappear.

5.4 Relevance to other Markets

Numerous other markets are characterized by time-consuming search and decentralized ex-

change. Perhaps an obvious example is the housing market, where search is complicated

by heterogeneity in the characteristics of houses and in the tastes of home buyers. In a

model where prices are determined by Nash bargaining between buyers and sellers, Wheaton

(1990) finds that a search model explains the negative correlation between house prices and

the housing vacancy rate. Duffie, Gârleanu, and Pedersen (2005) and Lagos and Rocheteau

(forthcoming) argue that search frictions are also important in over-the-counter asset mar-

kets, such as the market for asset-backed securities and corporate bonds. Although the time

it takes to find a trading partner is short, these papers conclude that search frictions are

useful for understanding trading volume and bid-ask spreads. Again both papers assume

that asset prices are determined by bargaining between buyers and sellers.

But if prices are determined by bargaining, then the type of rigidities that I emphasized in

Chapter 4 may be important in these markets as well. The asking price for a house typically

reflects the price of recent transactions for comparable properties. Similarly in financial

markets, traders may look for guidance at the price of related securities when they submit

their orders. As in the labor market, such rigidities may be innocuous at the individual

level, affecting only the division of the gains from trade. Still, they would potentially have

important implications for the path prices, the demand for assets, and the time it takes

to trade in the market. This possibility has so far received little attention in the search

literature, but, if it is relevant, it may be as important for macroeconomic outcomes as the

wage rigidities that I have emphasized in this book. Although its outcome is uncertain, there

is obviously a lot of research yet to be done on this topic.
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Appendix A

Data

Although this book focuses on the behavior of the labor wedge, I also discuss the comovement

of a number of other macroeconomic time series. Each of these has an empirical counterpart.

• Output y: I use a quantity-weighted measure of real Gross Domestic Product, National

Income and Product Accounts Table 1.1.3, line 1. I express this in per capita terms,

dividing by the population series from Prescott, Ueberfeldt, and Cociuba (2008).

• Consumption: c I use a quantity-weighted measure of real consumption of nondurables

and services, National Income and Product Accounts Table 1.1.3, Rows 4 and 5. I

express this in per capita terms, dividing by the population series from Prescott, Ue-

berfeldt, and Cociuba (2008).

• Recruiter-unemployment ratio θ: I proxy the number of recruiters with the Conference

Board help-wanted advertising index, available directly from the Conference Board. I

divide this by the number of unemployed workers, BLS series LNS13000000.

• Capital stock k: I measure the capital stock using the Bureau of Economic Analysis’s

Fixed Asset Table 1.1, line 1, the current cost net stock of fixed assets and consumer

durable goods. This is an annual series, which I interpolate rowarly to obtain a quarterly

series. I divide by the population series from Prescott, Ueberfeldt, and Cociuba (2008).

• Employment n: I use the measure of employment from Prescott, Ueberfeldt, and Co-

ciuba (2008), divided by population from the same paper.

• Labor share wn/y: I measure the labor share using National Income and Product

Accounts Table 1.10. Labor income is “Compensation of employees, paid” (line 2).

Capital income is consumption of fixed capital (line 23) plus net operating surplus of

private enterprises (line 11) minus proprietors’ income (line 15). Labor share is labor
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y c θ k n wn/y c/y τ̂
Relative s.d. 1 0.565 15.300 0.205 0.655 0.520 0.648 0.946

y 1 0.825 0.895 0.396 0.781 0.000 -0.867 -0.219

c — 1 0.764 0.331 0.670 -0.006 -0.537 -0.391

θ — — 1 0.470 0.868 -0.075 -0.729 -0.440

k — — — 1 0.509 -0.086 -0.202 -0.427

Correlations n — — — — 1 -0.138 -0.616 -0.633

wn/y — — — — — 1 -0.025 0.242

c/y — — — — — — 1 -0.131

τ̂ — — — — — — — 1

Table A.1: Detrended U.S. data, 1959–2007.

y c θ k n wn/y c/y τ̂
Relative s.d. 1 0.581 14.704 0.247 0.639 0.550 0.666 1.028

y 1 0.813 0.882 0.448 0.690 0.007 -0.839 -0.088

c — 1 0.697 0.480 0.512 0.052 -0.479 -0.219

θ — — 1 0.419 0.819 -0.057 -0.720 -0.311

k — — — 1 0.329 -0.043 -0.233 -0.141

Correlations n — — — — 1 -0.068 -0.538 -0.597

wn/y — — — — — 1 -0.033 0.193

c/y — — — — — — 1 -0.260

τ̂ — — — — — — — 1

Table A.2: Annual Growth rates, U.S. data, 1959–2007.

income divided labor plus capital income. This implicitly assigns the same labor share

to proprietors’ income and to production and important taxes (line 9).

• Consumption-output ratio wn/y: I measure the nominal consumption-output ratio.

Consumption is nondurables and services, National Income and Product Accounts Ta-

ble 1.1.5, Rows 4 and 5. Output is Gross Domestic Product, line 1.

• Labor Wedge τ̂ : I measure the labor wedge using equation (1.12), assuming ε = 1 and

setting the disutility of work to ensure that the labor wedge is 0.4 on average.

I construct quarterly data from 1959 to 2007. I detrend the data using an HP filter with

parameter 1600 (Table A.1). I also express the data as annual growth rates (Table A.2).
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Duffie, Darrell, Nicolae Gârleanu, and Lasse Heje Pedersen. 2005. “Over-the-Counter Mar-

kets.” Econometrica 73 (6):1815–1847.

Ebrahimy, Ehsan and Robert Shimer. 2009. “Stock-Flow Matching.” University of Chicago

Mimeo.

Elsby, Michael W., Ryan Michaels, and Gary Solon. 2007. “The Ins and Outs of Cyclical

Unemployment.” NBER Working Paper No. 12853.

Erceg, Christopher J., Dale W. Henderson, and Andrew T. Levin. 2000. “Optimal Mone-

tary Policy with Staggered Wage and Price Contracts.” Journal of Monetary Economics

46 (2):281–313.



References 161
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