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Abstract

We use Bayesian methods to estimate two models of post WWII U.S. in-
flation rates with drifting stochastic volatility and drifting coefficients. One
model is univariate, the other a multivariate autoregression. We define the
inflation gap as the deviation of inflation from a pure random walk component
of inflation and use both models to study changes over time in the persistence
of the inflation gap measured in terms of short- to medium-term predicability.
We present evidence that our measure of the inflation-gap persistence increased
until Volcker brought mean inflation down in the early 1980s and that it then
fell during the chairmanships of Volcker and Greenspan. Stronger evidence for
movements in inflation gap persistence emerges from the VAR than from the
univariate model. We interpret these changes in terms of a simple dynamic
new Keynesian model that allows us to distinguish altered monetary policy
rules and altered private sector parameters.

1 Introduction

This paper studies how inflation persistence has changed since the Great Inflation.
We distinguish the persistence of inflation from the persistence of a component of it
called the inflation gap. Our first message is that although inflation remains highly
persistent, the inflation gap became less persistent after the Volcker disinflation. Our
second message is that multivariate information helps to detect changes in inflation-
gap persistence. Although the univariate evidence is mixed, a clearer picture emerges
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tian Matthes for research assistance. Sargent thanks the National Science Foundation for research
support through a grant to the National Bureau of Economic Research.
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from a VAR. Our third message is that the decline in inflation-gap persistence seems
to be due for the most part to lower variability of changes in the Fed’s long-run
inflation target.

We decompose inflation into two parts, a stochastic trend τt that (to a first-order
approximation) evolves as a driftless random walk, and an inflation gap gt = πt − τt

that represents temporary differences between actual and trend inflation. In general
equilibrium models, trend inflation is usually pinned down by a central bank’s target,
a view that associates movements in trend inflation with shifts in the Federal Reserve’s
target. Because trend inflation is a driftless random walk, actual inflation has a unit
autoregressive root and is highly persistent. In our view, target inflation has not
stopped drifting, though its conditional variance has declined.1

Transient movements in the inflation gap are layered on top of τt. (Cogley and
Sargent 2001 and 2005a) reported weak evidence of a decline in inflation-gap persis-
tence. Several authors have challenged the statistical significance of that evidence
(e.g., see Sims 2001, Stock 2001, and Pivetta and Reis 2007). Here we report new
evidence that is more decisive. We can now say that it is very likely that inflation-gap
persistence has decreased since the Great Inflation.

We organize the discussion as follows. We begin with an unobserved components
model of Stock and Watson (2007) and relate it to the drifting-parameter VARs of
Cogley and Sargent (2005a) and Primiceri (2005). We use these statistical models to
define trend inflation and to focus attention on the inflation gap.

Next we define a measure of persistence in terms of the predictability of the
inflation gap,2 in particular, as the fraction of total inflation-gap variation j quarters
ahead that is due to shocks inherited from the past. We say that the inflation gap
is weakly persistent when the effects of shocks decay quickly and that it is strongly
persistent when they decay slowly. When the effects of past shocks die out quickly,
future shocks account for most of the variation in gt+j, pushing our measure close to
zero. But when the effects of past shocks on gt+j decay slowly, they account for a
higher proportion of near-term movements, pushing our measure of persistence closer
to one. Thus, a large fraction of variation over short to medium horizons that is
due to past shocks signifies strong persistence and a small fraction indicates weak
persistence.

Under a convenient approximation, our measure is the R2 statistic for j-step
ahead inflation-gap forecasts.3 Heuristically, a connection between predictability and

1For evidence that the innovation variance for τt has declined, see Stock and Watson (2007).
2This measure is inspired by Diebold and Kilian (2001). Barsky (1987) used a closely-related

measure to compare inflation persistence under the Gold Standard and after World War II.
3Strictly speaking, we should say ‘pseudo forecasts’ because we neglect complications associated

with real-time forecasting. This is not a shortcut; it is intentional. Our goal is to make retrospective
statements about inflation persistence. To attain as much precision as possible, we use ex post
revised data and estimate parameters using data through the end of the sample.
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persistence arises because past shocks give rise to forecastable movements in gt+j,

while future shocks contribute to the forecast error. Hence, the continuing influence
of past shocks can be measured by the proportion of predictable variation in gt+j.

We deduce persistence measures from the posterior distribution of a drifting-
parameter VAR, then study how they have changed since the Great Inflation. A key
finding is that inflation gaps were highly predictable circa 1980, but are much less so
now. Furthermore, the evidence of declining persistence is statistically significant at
conventional levels. Thus, the statistical results strengthen our conviction that the
inflation gap has become less persistent.

Finally, we use a simple dynamic new Keynesian model to examine what caused
the change in the law of motion for inflation. In our DSGE model, improved monetary
policy is the single most important factor explaining the decline in inflation volatility
and persistence. A key dimension is the reduction in the rate at which the Fed’s target
drifts. Nevertheless, nonpolicy factors are also important; in particular, we find that
mark-up shocks have become less volatile and persistent, and this also contributes
to better inflation outcomes. In our model, better policy and changes in the private
sector both play a role.

2 Unobserved components models for inflation

Stock and Watson (2007) estimate a univariate unobserved components model for
inflation. They assume that inflation πt is the sum of a stochastic trend τt and a
martingale-difference innovation επt,

πt = τt + επt. (1)

The trend component evolves as a driftless random walk,

τt = τt−1 + ετt. (2)

Equation (1) is the measurement equation for a state-space representation, and equa-
tion (2) is the state equation. The innovations επt and ετt are assumed to be martin-
gale differences that are conditionally normal with variances hπt and hτt, respectively.
The latter are independent stochastic volatilities that evolve as geometric random
walks,

ln hπt = ln hπt−1 + σπηπt, (3)

ln hτt = ln hτt−1 + στητt

where ηπt and ητt are i.i.d. Gaussian shocks with means of zero that are mutually
independent.
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A consensus has emerged that trend inflation is well approximated by a driftless
random walk. Authors who model trend inflation in this way include Cogley and
Sargent (2001, 2005a), Ireland (2007), Smets and Wouters (2003), and Cogley and
Sbordone (2006). There is little controversy about this feature of the data. Our main
focus, however, is on the inflation gap, gt ≡ πt − τt. We want to know how persistent
gt is and whether the degree of persistence in gt has changed over time. Stock and
Watson’s (2007) model is not a suitable vehicle for investigating this issue because it
imposes that gt ≡ επt is serially uncorrelated for all t.

Reading the literature on inflation persistence can be confusing because authors
sometimes fail to state clearly what feature of the data they are trying to measure.
For instance, Pivetta and Reis (2007) look for changes in inflation persistence by
running rolling unit-root tests on πt. They find that the largest autoregressive root
is always close to 1 and conclude that inflation persistence is unchanged. But that
finding can be viewed simply as a manifestation of shifts in target inflation: πt has a
unit root because τt drifts. Estimates of the largest autoregressive root in πt would
help measure inflation-gap persistence only if trend inflation were constant over time,
an assumption that much of the recent literature denies.4

Stock and Watson’s specification is a useful starting point because it highlights
the role of τt. But it is not a good vehicle for pursuing questions about inflation-gap
persistence because it assumes that gt = επt is a martingale difference. To address the
questions about the persistence of gt that interest us, we must modify their model.

Cogley and Sargent (2005a) estimate a closely related time-varying parameter
VAR. Evidence reported there suggests that gt is autocorrelated and that the degree
of serial dependence has probably changed over time. But that model assumed no
stochastic volatility in the parameter innovations, a feature that Stock and Watson
say is important. In this paper, we combine and extend features of Stock and Watson’s
model and our earlier ones to create a new model that lets us focus on the persistence
of the inflation gap.

2.1 A univariate autoregression with drifting parameters

As a first step, we introduce an autoregressive term into Stock and Watson’s
representation. With this addition, the measurement and state equations become

πt = µt−1 + ρt−1πt−1 + επt, (4)

γt = γt−1 + εst, (5)

where γt = [µt, ρt]
′ and εst = [εµt, ερt]

′. Here the vector εst is the noise in a state vector,
whose components are parameter values in the measurement equation (4). Notice that

4Levin and Piger (2004) pointed out this shortcoming of Pivetta and Reis. After allowing for a
shift in trend inflation, Levin and Piger were able to detect a decline in inflation-gap persistence.
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the constant term in the measurement equation has become an intercept rather than
a local approximation to the mean.5 As in our earlier work, we approximate trend
inflation by τt

.
= µt/(1 − ρt). To a first-order approximation, this is also a driftless

random walk.6

Equations (4) and (5) describe a univariate autoregression with drifting param-
eters. If the innovation variances were all constant, (4)–(5) would be a special case
of the time-varying parameter model of Cogley and Sargent (2001). In Cogley and
Sargent (2005a) and Primiceri (2005), the measurement-innovation variance is time-
varying, but the variance of the state-innovation εst variance is constant. In contrast,
Stock and Watson assume that both innovation variances are time varying. Here
we follow Stock and Watson by modeling both innovation variances as stochastic
volatility processes.

We retain Stock and Watson’s specification for var(επt), and we adopt a bivariate
stochastic volatility model for the state innovations εst:

var(εst) = Qt = B−1HstB
−1′. (6)

As in our earlier work, we assume that Hst is diagonal and that B is lower triangular,

Hst =

(
hµt 0
0 hρt

)
, (7)

B =

(
1 0

β21 1

)
. (8)

The diagonal elements of Hst are independent, univariate stochastic volatilities that
evolve as driftless, geometric random walks:

ln hit = ln hit−1 + σiηit, (9)

i = π, s. The volatility innovations ηit are mutually independent, standard normal
variates. The variance of ∆ ln hit depends on the free parameter σi. For tractability
and parsimony, we also assume that εst is uncorrelated at all leads and lags with επt

and that the standardized state and measurement innovations are independent of the
volatility innovations ηt.

This is a convenient specification for modeling recurrent persistent changes in
variance. It ensures that Qt is positive definite and allows for time-varying correlations
among the elements of εst.

We constrain ρt to be less than one in absolute value at all dates. Having assumed
that trend inflation is a driftless random walk, the stability constraint on ρt just rules

5We also adopt a slightly different dating convention. The reason for this dating convention will
become clear when we discuss predictability. Nothing of substance hinges on this convention.

6A first-order Taylor approximation makes τt a linear function of γt, which evolves as a driftless
random walk.
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out a second unit or explosive root in inflation. There is an emerging consensus that
the price level is best modeled as an I(2) process, but few economists think that it is
I(3). The stability constraint just rules out an I(3) representation.

The model is estimated by Bayesian methods using a Markov Chain Monte Carlo
algorithm outlined in appendix A.

2.2 A vector autoregression with drifting parameters

Although a univariate autoregression is a useful first step, it is not entirely satis-
factory for representing changes in the inflation process. Cogley and Sargent (2001
and 2005a) found evidence of changes in the autocorrelations of the inflation gap and
also in cross-correlations with lags of other variables. Accordingly, we also consider a
vector autoregression with drifting parameters. Since our definition of the persistence
of gt is based on its predictability, it is interesting to check how findings depend on
the information that we use to condition predictions.

As in Cogley and Sargent (2005a), we estimate a trivariate VAR for inflation,
unemployment, and a short-term nominal interest rate. The state and measurement
equations for the VAR are

yt = X ′
t−1θt−1 + εyt, (10)

θt = θt−1 + εst. (11)

The vector yt contains current observations on the variables of interest, Xt−1 includes
constants plus lags of yt, and εyt is a vector of innovations. The parameter vector θt

evolves as a driftless random walk subject to a reflecting barrier that guarantees that
the VAR has nonexplosive roots at every date.

We assume that the innovation variances follow multivariate stochastic volatility
processes. The state innovation variance Qt has the same form as in the AR(1)
model, but has a higher dimension to conform to the size of θt. We assume that the
measurement innovation variance Vt also has this form, again adapting its dimensions
to the size of εyt.

This model is very much like those in Cogley and Sargent (2005a) and Primiceri
(2005). The main difference concerns the specification for var(εst). Our earlier pa-
pers assumed that the parameter innovation variance was constant; here we adopt a
stochastic volatility model so that the variance is time varying. Equations (10) and
(11) can also be regarded as a multivariate extension of Stock and Watson (2007).
We think this model is a useful vehicle for connecting their paper to this one.

We estimate the multivariate model by a Bayesian Markov Chain Monte Carlo
algorithm. Details are given in appendix A.1.

In what follows, we make frequent use of the companion form of the VAR,

zt+1 = µt + Atzt + εzt+1. (12)
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The vector zt includes current and lagged values of yt, the vector µt contains the VAR
intercepts, and the companion matrix At contains the autoregressive parameters. We
use the companion form for multi-step forecasting. When we do that, we approximate
multi-step forecasts by assuming that VAR parameters will remain constant at their
current values going forward in time. This approximation is common in the literature
on bounded rationality and learning, being a key element of an ‘anticipated-utility’
model (Kreps 1998). In other papers, we have found that it does a good job of
approximating the mean of Bayesian predictive densities (e.g., see Cogley, Morozov,
and Sargent 2005 and Cogley and Sargent 2006).

With this assumption, we can form local-to-date t approximations to the moments
of zt. For the unconditional mean, we follow Beveridge and Nelson (1981) by defining
the stochastic trend in zt as the value to which the series is expected to converge in
the long run:

z̄t = lim
h→∞

Etzt+h. (13)

With θt held constant at its current value, we approximate this as

z̄t
∼= (I − At)

−1µt. (14)

To a first-order approximation, z̄t evolves as a driftless random walk, implying that
inflation and the other variables in yt have a unit root. As in the AR(1) model, the
stability constraint on At just rules out an I(2) representation for yt.

After subtracting z̄t from both sides of (12) and invoking the anticipated-utility
approximation, we get a forecasting model for gap variables,

(zt+1 − z̄t) = At(zt − z̄t) + εz,t+1. (15)

We approximate forecasts of gap variables j periods ahead as Aj
t ẑt,

7 and we approx-
imate the forecast-error variance by

vart(ẑt+j) ∼=
∑j−1

h=0
(Ah

t )var(εz,t+1)(A
h
t )
′. (16)

To approximate the unconditional variance of ẑt+1, we take the limit of the conditional
variance as the forecast horizon j increases,8

var(ẑt+1) ∼=
∑∞

h=0
(Ah

t )var(εz,t+1)(A
h
t )
′. (17)

Under the anticipated-utility approximation, this is also the unconditional variance
of ẑt+s for s > 1.

7By the anticipated-utility approximation, Etz̄t+j = z̄t. This is a good approximation because z̄t

is a driftless random walk to a first-order approximation.
8This is a second-moment analog to the Beveridge-Nelson trend.
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3 Persistence and predictability

Let πt = eπzt, where eπ is a selector vector. To measure persistence at a given date
t, we calculate the fraction of the total variation in gt+j that is due to shocks inherited
from the past relative to those that will occur in the future. This is equivalent to 1
minus the fraction of the total variation due to future shocks. Since future shocks
account for the forecast error, that fraction can be expressed as the ratio of the
conditional variance to the unconditional variance,

R2
jt = 1− vart(eπẑt+j)

var(eπẑt+j)
, (18)

∼= 1−
eπ

[∑j−1
h=0(A

h
t )var(εzt+1)(A

h
t )
′
]
e′π

eπ

[∑∞
h=0(A

h
t )var(εzt+1)(Ah

t )
′] e′π

.

We label this R2
jt because it is analogous to the R2 statistic for j-step ahead forecasts.

This fraction must lie between zero and one, and it converges to zero as the forecast
horizon j lengthens.9 Whether it converges rapidly or slowly reflects the degree of
persistence. If past shocks die out quickly, the fraction converges rapidly to zero. But
if one or more shocks decay slowly, the fraction may converge only gradually to zero,
possibly remaining close to one for some time. Thus, for small or medium j ≥ 1, a
small fraction signifies weak persistence and a large fraction strong persistence.

In a univariate AR(1) model, things simplify because R2
jt depends on a single pa-

rameter ρt. In this case, the unconditional variance is σ2
εt/(1−ρ2

t ), and the conditional
variance is (1− ρ2j

t )σ2
εt/(1− ρ2

t ). Therefore, R2
jt simplifies to ρ2j

t .

Matters are more complicated if we increase the number of lags or add other
variables. For a VAR, the ratio depends on all of the parameters of the companion
matrix At. Sometimes economists summarize persistence in a VAR by focusing on
the largest autoregressive root in At. This is problematic for at least two reasons.
One is that the largest root could be associated not with inflation but with another
variable in the VAR. Hence the largest root of At might exaggerate persistence in
the inflation gap. Another problem is that two large roots could matter for inflation,
in which case the largest root of At would understate the degree of persistence. We
think it is important to retain all the information in At.

3.1 A caveat

Nevertheless, (18) is not entirely satisfactory because it depends on the conditional
variance Vt+1 in addition to the conditional mean parameters At. Changes in Vt+1

that take the form of a scalar multiplication are not a problem because the scalar
would cancel in numerator and denominator. But R2

jt is not invariant to other changes

9This follows from the stability constraint on At.
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in Vt+1. For instance, our measure of persistence would be reduced by a change in the
composition of structural shocks away from those whose impulse response functions
decay slowly and toward those whose impulse response functions vanish quickly.

This problem really relates to the question of why inflation persistence has changed,
not whether it has changed. For the moment, we want to focus on the latter. We
think that assembling evidence about the structure of inflation persistence is a step
in the right direction.

In what follows, we focus on horizons of 1, 4, and 8 quarters, those being the
most relevant for monetary policy. We calculate values of R2

jt implied by a drifting-
parameter VAR and study how they have changed over time.

4 Properties of inflation

Inflation is measured either as the log-difference of the GDP or PCE chain-type
price index. Stock and Watson (2007) examine GDP inflation. A number of colleagues
in the Federal Reserve system encouraged us to look at PCE inflation as well, saying
that the Fed pays more attention to that for policy purposes.

For the VAR, we also condition on unemployment and a short-term nominal inter-
est rate. Unemployment is measured by the civilian unemployment rate. The original
monthly series was converted to a quarterly basis by sampling the middle month of
each quarter. As in Cogley and Sargent (2001 and 2005a), the logit of the unemploy-
ment rate enters the VAR. The nominal interest rate is measured by the secondary
market rate on three-month Treasury bills. These data are also sampled monthly,
and we converted to a quarterly series by selecting the first month of each quarter in
order to align the nominal interest data as well as possible with the inflation data.
For the VAR, the nominal interest rate is expressed as yield to maturity.

The inflation and unemployment data are seasonally adjusted, and all the data
span the period 1948.Q1 to 2004.Q4. The data were downloaded from the Federal
Reserve Economic Database (FRED).10

Our priors are described in the appendices. For the most part, they follow our
earlier papers. Our guiding principle was to use proper priors to ensure that the
posterior is proper, but to make the priors as weakly informative as possible, so that
the posterior is dominated by information in the data.11

10This can be found at http://research.stlouisfed.org/fred2/. The series have FRED mnemonics
GDPCTPI, PCECTPI, UNRATE, and TB3MS, respectively

11We think this is appropriate for exploratory data analysis. However it means that we cannot
compare models via Bayes factors for reasons having to do with the Lindley paradox. E.g., see
Gelfand (1996).
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4.1 Trend inflation and inflation volatility

A number of our findings resemble those reported elsewhere (e.g. Cogley and
Sargent 2005a, Stock and Watson 2007). We briefly touch on them before moving on
to novel ones.

Figure 1 portrays the posterior median and interquartile range for τt. The left and
right-hand columns depict estimates for the AR(1) and VAR, respectively, while the
top and bottom rows correspond to GDP and PCE inflation. Trend inflation is esti-
mated using data through 2004.Q4. Accordingly, the figure represents a retrospective
interpretation of the data.
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Figure 1: Trend Inflation

The patterns shown here are similar to those reported in earlier papers. Trend
inflation was low and steady in the early 1960s, it began rising in the mid-1960s, and
it attained twin peaks around the time of the 1970s oil shocks. It fell sharply during
the Volcker disinflation, and then settled down to the neighborhood of 2 percent
after the mid-1990s. There are some differences between the AR(1) and the VAR,
and those differences will influence some properties of the inflation gap. Nevertheless,
the broad contour of trend inflation is similar across models.

The next two figures summarize changes in inflation volatility. Once again, we
plot the posterior median and interquartile range at each date. The top row in each
figure shows the standard deviation for the inflation innovation, and the bottom row
plots the unconditional standard deviation, [eπVẑte

′
π]1/2.
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Figure 2: GDP Inflation Volatility
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Figure 3: PCE Inflation Volatility

The patterns shown here are also familiar from earlier papers. For the univariate
models, the innovation variance started rising in the mid 1960s and peaked around
the time of the first oil shock. After that, the innovation variance declined gradually
until the mid 1990s. The pattern for the VARs is a bit different. Instead of a gradual
rise and fall, the VAR innovation variance remains roughly constant for most of
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the sample, except for a spike in the late 1970s and early 1980s when the Fed was
targeting monetary aggregates. That the innovation variances differ across univariate
and multivariate models is not surprising because they portray different conditional
variances. The VARs condition on more variables, and its innovation variance would
be the same as in the univariate model only if the additional variables failed to
Granger cause inflation. Since the additional variables were chosen precisely because
they help forecast inflation, the VAR innovation variances are lower than the AR(1)
innovation variances.

The bottom rows of figures 2 and 3 illustrate the unconditional standard deviation
of inflation. For the AR(1) models, the general contour is similar to that of the
innovation variance, but the magnitudes differ. The unconditional variance also rises
and falls gradually, but it reaches a higher peak in the mid 1970s. For an AR(1), the
unconditional variance can be expressed as σ2

πt = σ2
εt/(1 − ρ2

t ). If ρt were constant,
movements in σπt would mirror those in σεt. From the patterns shown here, it follows
that changes in the innovation variance account for much of the variation in the
unconditional variance, but not all of it. Changes in ρt also matter. We say more
about the contribution of ρt below.

Similar comments apply to the VARs, except that changes in the relative magni-
tudes of the two variances are even more pronounced. In the early 1980s, the standard
deviation of VAR innovations rose by about 10 basis points, an increase of roughly
20 percent. At the same time, the unconditional standard deviation increased by
roughly 4 percentage points, or about 200 percent. Hence for the VAR, changes in
the innovation variance account for a relatively small proportion of changes in the
unconditional variance. Most of the variation in the VAR unconditional variance
must be due to changes in persistence.

Among other things, this means that a multivariate conditioning set is likely to
be more helpful for detecting changes in inflation persistence. A univariate model
may not use enough information.

4.2 Has the inflation gap become less persistent?

To focus more clearly on changes in persistence parameters, we turn to evidence
on the predictability of the inflation gap. First we consider univariate evidence and
then we turn to results from the VAR.

4.2.1 Univariate evidence

For the AR(1) model, everything depends on a single parameter ρt. Figure 4
portrays the posterior median and interquartile range for this parameter for the two
inflation measures.
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Figure 4: Posterior Median and Interquartile Range for ρt

For GDP inflation, the inflation gap is moderately persistent throughout the sam-
ple. The median estimate for ρt was around 0.55 in the early 1960s. It increased
gradually to 0.7 by 1980, and then fell in two steps in the early 1980s and early
1990s, eventually reaching a value of 0.3 at the end of the sample. These estimates
imply half-lives of 3.5, 5.8, and 1.7 months, respectively. For PCE inflation, the gap
was initially less persistent, with an autocorrelation of 0.3, but otherwise movements
in ρt are similar to those for GDP inflation. The patterns shown here are consistent
with evidence reported in our earlier papers. Taken at face value, the figure suggests
not only that inflation was lower on average during the Volcker-Greenspan years, but
also that the inflation gap was less persistent.

The controversy about inflation persistence hinges not on the evolution of the
posterior median or mean, however, but rather on whether changes in ρt are statis-
tically significant. To assess this, we examine the joint posterior distribution for ρt

across pairs of time periods. There are many possible pairs, of course, and to make
the problem manageable we concentrate on two pairs, 1960-1980 and 1980-2004. The
years 1960 and 2004 are the beginning and end of our sample, respectively.12 We
chose 1980.Q4 because it was the eve of the Volcker disinflation and because it splits
the sample roughly in half. However, the results reported below are not particularly
sensitive to this choice. Dates adjacent to 1980.Q4 tell much the same story.

Figures 5 and 6 depict results for GDP inflation. Figure 5 portrays the joint dis-
tribution for ρ1980 and ρ2004, with values for 1980 plotted on the x-axis and those for
2004 on the y-axis. Combinations clustered near the 45 degree line represent pairs
for which there was little or no change. Those below the 45 degree line represent a
decrease in persistence (ρ1980 > ρ2004), while those above represent increasing per-
sistence. Similarly, figure 6 illustrates the joint distribution for ρ1960 and ρ1980, with
values for 1960 plotted on the x-axis and those for 1980 on the y-axis.

12Earlier data are used as a training sample for the prior.
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Figure 5: Joint Distribution for ρ1980 and ρ2004, GDP Inflation

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

GDP Deflator

1960

1
9

8
0

Figure 6: Joint Distribution for ρ1960 and ρ1980, GDP Inflation

A number of alternative perspectives can be represented on these graphs. Stock
and Watson assume ρt = 0, so the point (0, 0) represents their model. There are
some realizations in the neighborhood of the origin, but most of the probability mass
lies elsewhere. The second column of table 1 reports the probability that ρt is close
to zero in both periods, where ‘close’ is defined as |ρ| < 0.1. This comes out to 1.2
and 1.7 percent, respectively, for the two pairs of years. This finding motivates our
extension of their model.
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Table 1: Posterior Probabilities
GDP Inflation

pair Stock-Watson |∆ρ| < 0.05 High, No Change Changing ρ
1980, 2004 0.012 0.122 <0.001 0.894
1960, 1980 0.017 0.384 0.027 0.758

PCE Inflation
pair Stock-Watson |∆ρ| < 0.05 High, No Change Changing ρ

1980, 2004 0.006 0.056 <0.001 0.959
1960, 1980 0.008 0.066 <0.001 0.956

Sims (2001), Stock (2001), and Pivetta and Reis (2007) argue that inflation persis-
tence is approximately unchanged. That perspective can be represented by drawing
a neighborhood along the 45 degree line. As figures 5 and 6 show, the posterior at-
taches considerable probability mass to a ridge clustered tightly along the 45 degree
line. How much probability is near that ridge depends on how a neighborhood is
defined. For example, if we define ‘little change’ by the neighborhood |∆ρ| < 0.05,
the posterior probability comes to 12 and 38 percent, respectively, for the two pairs of
years. Obviously these probabilities would be higher if we widened the neighborhood
and lower if we narrowed it, but the point is that the probability is nontrivial even
for a narrowly defined interval along the 45 degree line. For the GDP deflator, the
notion that univariate inflation-gap persistence is approximately constant cannot be
rejected at the 10 percent level.

If we examine the ridges more closely, we notice that the scatterplots are densest
along the ridge for low values of ρ and that they become sparse for high values.
Thus, the notion that inflation-gap persistence is both unchanging and high has little
support. For example, if we define ‘high persistence’ as a half-life of 1 year or more
(ρ ≥ 0.8409), the probability of high and unchanging persistence is less than one-tenth
of 1 percent for 1980-2004 and 2.7 percent for 1960-1980. Inflation-gap persistence
might have been high (especially during the Great Inflation), or it might have been
unchanged, but it is unlikely that it was both. As noted above, the notion that
persistence is both high and unchanging really applies to inflation – because of drift
in τt – but not to the inflation gap.

In figure 5, the largest probability mass of points – a bit less than 90 percent
– lies below the 45 degree line. For combinations in this region, ρ1980 > ρ2004, so
this represents the probability of declining inflation-gap persistence. We interpret
this as substantial though not decisive evidence of a decline in persistence. Similarly,
in figure 6, the preponderance of the combinations – approximately 75 percent –
lie above the 45 degree line and are consistent with the idea that the inflation gap
became more persistent between 1960 and 1980.
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Thus, for GDP inflation the univariate evidence is mixed. While the preponder-
ance of the joint distribution points to a rise and then a decline in persistence, there
is enough mass along the 45 degree ridge in figures 5 and 6 to support the idea that
inflation-gap persistence has not changed. This does not mean that the two inter-
pretations stand on an equal footing; one has higher posterior probability than the
other. But neither perspective overwhelms the other, and neither can be dismissed
as unreasonable.

Figures 7 and 8 repeat this analysis for PCE inflation. For this measure, clear
evidence emerges of a rise in persistence between 1960 and 1980 and a decline there-
after. In figures 7 and 8, the 45 degree ridges are more sparsely populated than those
for GDP inflation, and the great majority of points lie below or above the line. The
probability of an increase in ρt between 1960 and 1980 is 0.956, and the probability
of a decline after 1980 is 0.959. This is significant evidence of changing inflation-gap
persistence.
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Figure 7: Joint Distribution for ρ1980 and ρ2004, PCE Inflation
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4.2.2 A pitfall: uncertainty at one time or across time?

Had we followed the methods of Pivetta and Reis (2007), we would not have de-
tected these changes. Pivetta and Reis assess statistical significance by asking whether
a horizontal line can be drawn through marginal confidence bands surrounding the
mean or median. If it can, they conclude that the evidence for change is statisti-
cally insignificant. For both GDP and PCE inflation, marginal confidence bands for
ρt overlap at all three dates. Hence we would have mistakenly concluded that the
evidence for changing persistence is insignificant. Their procedure is difficult to in-
terpret, however, because it confounds uncertainty about the level of ρt at a point in
time with uncertainty about changes in ρt across dates. A marginal confidence band
is fine for assessing level uncertainty at a point in time, but we must consult the joint
distribution across dates in order to assess uncertainty about changes.13 For PCE
inflation, the joint distribution points to significant changes in ρt.

4.3 Multivariate evidence

As noted above, the estimates reported in figures 2 and 3 suggest that VARs are
more promising for detecting changes in inflation-gap persistence. Accordingly, we
now turn to multivariate evidence. For each draw in the posterior distribution for
VAR parameters, we calculate R2

jt statistics as in equation (18) and then study how
they changed during and after the Great Inflation. Figure 9 portrays the posterior
median and interquartile range for R2

jt for j = 1, 4, and 8 quarters.
The top row refers to 1-quarter ahead forecasts. In the mid 1960s, VAR pseudo

forecasts accounted for approximately 50 to 55 percent of the variation of the inflation
gap. During the Great Inflation, this increased to more than 90 percent and at times
approached 99 percent. The inflation gap became less predictable during the Volcker
disinflation, and after that R2

1t settled to the neighborhood of 50 percent. It was still
around 50 percent at the end of the sample.

The second and third rows refer to 4 and 8 quarter forecasting horizons. As
expected, R2

jt statistics are lower for longer horizons. For j = 4, VAR pseudo forecasts
accounted for roughly a quarter of the inflation-gap variation in the mid 1960s, for
approximately 50 to 75 percent during the Great Inflation, and for about 15 percent
after the Volcker disinflation. For j = 8, the numbers follow a similar pattern but are
lower. VAR pseudo forecasts accounted for about 10 percent of inflation-gap variation
in the mid-1960s, for 20 to 35 percent during the mid 1970s and early 1980s, and for 10
percent or less after the Volcker disinflation. Thus, there was apparently a substantial
decline in inflation-gap predictability after the mid 1980s.

13Sims and Zha (1999) make this point in the context of confidence bands for impulse response
functions. Their logic applies here.
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Figure 9: R2
t Statistics

Yet the question remains whether the changes are statistically significant. We
approach this question in the same way as before, by examining the joint posterior
distribution for R2

jt across pairs of years. Figures 10 and 11 plot the joint distribution
for R2

1t for the years 1980 and 2004. Values for 1980 are shown on the x -axis, and
those for 2004 are on the y-axis. For both measures of inflation, virtually the entire
distribution lies below the 45 degree line, signifying that R2

1,1980 > R2
1,2004 with high

probability. Very few points are clustered along the 45 degree line.
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Figure 11: Joint Distribution for R2
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Table 2 records the fraction of posterior draws for which R2
jt declined between

1980 and 2004. For 1-step ahead pseudo forecasts, the probability of a decline is
98.9 and 97.8 percent, respectively, for GDP and PCE inflation, thus confirming the
visual impression conveyed by the figures. For 4- and 8-quarter ahead forecasts, the
joint distributions are less tightly concentrated than those shown above, and the
probabilities are a bit lower. Nevertheless, at the 4-quarter horizon, the probability
of a decline in R2

jt is almost 96 percent for GDP inflation and 92 percent for PCE
inflation, and they are a bit less than 90 percent at the 8-quarter horizon.
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Table 2: Probability of Changing R2
jt

GDP Inflation
pair 1 Quarter Ahead 4 Quarters Ahead 8 Quarters Ahead

1980, 2004 0.989 0.957 0.889
1960, 1980 0.991 0.919 0.820

PCE Inflation
pair 1 Quarter Ahead 4 Quarters Ahead 8 Quarters Ahead

1980, 2004 0.978 0.922 0.876
1960, 1980 0.960 0.857 0.792

Figures 12 and 13 examine changes in predictability between 1960 and 1980.
Here we plot R2

1,1960 on the x -axis and R2
1,1980 on the y-axis. Now virtually the entire

distribution lies above the 45 degree line, signifying that R2
1,1960 < R2

1,1980 with high
probability. Table 2 also reports the probability of an increase in R2

j,t between 1960
and 1980. For GDP inflation, this probability is 99.1 percent for 1-quarter ahead
pseudo forecasts, 91.9 percent for 1-year ahead forecasts, and 82 percent for 2-year
ahead forecasts. The probabilities are slightly lower for PCE inflation, but the results
still point to a significant change in predictability at the 1-quarter horizon.

Thus, statistically significant evidence for changes in inflation persistence emerges
from VARs. Estimates of R2

1t put posterior probabilities above 96 percent on the joint
event of both an increase in persistence during the Great Inflation and a decline in
persistence after the Volcker disinflation. The results for 4-quarter ahead forecasts
also point in this direction, standing at the 90 or 95 percent levels for a fall in
persistence in the second half of the sample and straddling the 90 percent level for
a rise in the first half. The results for 2-year ahead forecasts hint at a change in
persistence, but fall short of statistical significance at the 90 percent level.
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5 Related research

Barksy (1987) explains an apparent violation of the Fisher equation in prewar US
data in terms of changes in inflation predictability. The correlation between infla-
tion and short-term nominal interest was negative prior to World War II but positive
afterward. Barsky argues that this reflects changes in the time-series properties of
inflation, not a change in the structural relation between nominal interest and ex-
pected inflation. Although inflation was highly forecastable after the mid 1960s,
he documented that it was essentially unforecastable prior to World War I, and he
demonstrated that this could account for the absence of a Fisher correlation in pre-war
data.

Benati (2006) gathers data on inflation in a wide variety of monetary regimes
and examines how inflation persistence varies across regime. Broadly speaking, he
reports that high persistence occurs only in monetary regimes that lack a well-defined
nominal anchor. For instance, for the modern era he contrasts countries whose central
bank explicitly targets inflation with those that do not, and he finds that inflation
is more autocorrelated in the latter. He also extends Barsky’s work by looking at
pre-WWII data from countries other than the US and confirms that inflation was
close to white noise in many countries.

For the postwar US, Stock and Watson (2007) also document changes in the
predictability of inflation. They find that inflation has become both easier and harder
to forecast in the Volcker-Greenspan era. In an absolute sense, forecasting inflation is
easier because inflation is less volatile and its innovation variance is smaller. But in a
relative sense, predicting inflation has become more difficult because future inflation
is less closely correlated with current inflation and other predictors. Their conclusion
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agrees with ours: although the innovation variance for inflation has declined, the
unconditional variance has fallen by more, implying that predictive R2 statistics are
lower.

5.1 Comparison with Atkeson-Ohanian findings

Stock and Watson also interpret a result of Atkeson and Ohanian (2001) in terms
of the changing time-series properties of inflation. Atkeson and Ohanian studied
the predictive power of backward-looking Phillips-curve models during the Volcker-
Greenspan era and found that Phillips-curve forecasts were inferior to a naive forecast
that equates expected inflation over the next 12 months with the simple average of
inflation over the previous year. Stock and Watson show that Phillips-curve models
were more helpful during the Great Inflation, and they account for the change by
pointing to two features of the data. First, like many macroeconomic variables,
unemployment has become less volatile since the mid-1980s. Hence there is less
variation in the predictor. Second, the coefficients linking unemployment and other
activity variables to future inflation have also declined in absolute value, further
muting their predictive power.

Our VARs share these characteristics. In figure 14 , we illustrate how news about
unemployment alters forecasts of inflation. At each date, we imagine that forecasters
start with information on inflation, unemployment, and the nominal interest rate
through date t − 1 and then see a one-sigma innovation in unemployment. They
revise their inflation forecasts in light of the unemployment news. Because the VAR
innovations are correlated, the forecast revision at horizon j is14

FRjt = eπAj
tE(εzt|εut)σut. (19)

Since the innovations are conditionally normal and the unemployment innovation is
scaled to equal σut, E(εzt|εut) = cov(εzt, εut)/σut. The figure portrays the median and
interquartile range for forecast revisions at horizons of 1, 4, and 8 quarters.

For the most part, a positive innovation in unemployment reduces expected infla-
tion. Furthermore, in the 1970s and early 1980s, the magnitude of forecast revisions
was substantial. For instance, according to the median estimates, a one-sigma inno-
vation in unemployment would have reduced expected inflation 4 quarters ahead by
close to 50 basis points in the mid-1970s and by approximately 1 to 1.5 percentage
points at the time of the Volcker disinflation. After the mid 1980s, however, the
sensitivity of inflation forecasts to unemployment news was more muted. During the
Greenspan era, a one-sigma innovation in unemployment would have had essentially
no influence at all on inflation forecasts one or two years ahead.

14This follows from another anticipated-utility approximation.
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Figure 14: How Unemployment News Alters Expected Inflation

As Stock and Watson point out, these outcomes reflect both that unemployment
innovations are less volatile and that inflation forecasts are less sensitive to innova-
tions of a given size. Figure 15 depicts the posterior median and interquartile range
for σut, the standard deviation of innovations to unemployment. The magnitude of
unemployment innovations was largest at the beginning of the sample and around
the time of the Volcker disinflation, but it declined sharply after the mid 1980s. One
reason why unemployment news has become less relevant for inflation forecasting is
that there is less of it.

But this is not the whole story. Figure 16 adjusts for changes in the innovation
variance by showing forecast revisions for the time-series average of the median esti-
mate of σut shown in figure 15. This holds the size of the hypothetical unemployment
innovation constant across dates. Although less pronounced, the pattern shown here
is similar to that depicted in figure 14 (the two figures are graphed on the same scale).
Hence figure 14 cannot be explained solely by changes in σut. Especially at horizons
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of a 4 or 8 quarters, inflation forecasts have also become less sensitive to a given
amount of unemployment news than they were during the Great Inflation.
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Figure 15: Standard Deviation of Unemployment Innovations
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Figure 16: Forecast Revisions with σu Held Constant
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Ironically, the decreased predictive power of unemployment innovations for infla-
tion coincided with a return of the Phillips correlation. Figure 17 portrays a number
of conditional and unconditional correlations for inflation and unemployment.15 The
unconditional correlation – shown in the bottom row – was negative prior to the 1970s,
but it turned positive during the Great Inflation. A negative correlation reappeared
after the Volcker disinflation and has hovered around -0.25 ever since.
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Figure 17: Conditional and Unconditional Phillips Correlations

The other rows of the figure depict conditional correlations at forecast horizons
of 1, 4, and 8 quarters. The 1- and 4-quarter ahead forecasts are most relevant for

15These were calculated using the approximations in equations (16) and (17).
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reconciling conventional wisdom with Atkeson and Ohanian. At these horizons, con-
ditional correlations have indeed been negative throughout the sample, peaking in
magnitude at the time of the Volcker disinflation. They are smaller now than in the
past, but at the 4-quarter horizon the correlation is still around -0.25. Nevertheless,
these conditional correlations are irrelevant for prediction because they summarize
unexpected comovements in the two variables. That prediction errors in unemploy-
ment are inversely related with prediction errors in inflation tells us little about fore-
castable movements in the two variables. Thus, Atkeson and Ohanian’s observations
about predictability can coexist comfortably with conventional views about Phillips
correlations.

Contrary to Atekson and Ohanion, figures 9-11 suggest that some short-term
predictability remains at the end of the sample. Two caveats should be kept in mind,
however. One is that our calculations involve pseudo forecasts that depend on data
and estimates through the end of the sample, while Atkeson and Ohanian look at
real-time, out-of-sample forecasts. Presumably this matters only slightly at the end
of the sample, but more for earlier periods.

The other caveat is that there is substantial uncertainty about R2
2004. We can

state with confidence that R2
2004 is smaller than R2

1980, but that is mainly because the
posterior for R2

1980 clusters tightly near 1. It is harder to say how predictable inflation
is at the end of the sample. At the 1-quarter horizon, the probability that R2

2004

exceeds 0.25 is 0.904 for GDP inflation and 0.924 for PCE inflation. Thus, although
our estimates suggest more predictability than those of Atkeson and Ohanian, the fact
that the posteriors portrayed in figures 10 and 11 assign non-negligible probability to
values of R2

2004 near zero provides at least some weak support for their point of view.

6 A More Structural Analysis

In this section we offer a structural explanation of the statistical findings pre-
sented above. We estimate a New-Keynesian model along the lines of Rotemberg and
Woodford (1997) and Boivin and Giannoni (2006). This model is a simple possible
framework for addressing the causes of the declines in the volatility, persistence, and
predictability of inflation.

6.1 The model

The model economy is populated by a representative household, a continuum of
monopolistically competitive firms, and a government. The representative household
maximizes

Et

∞∑
s=0

δsbt+s

[
log (Ct+s − hCt+s−1)− ϕ

∫ 1

0

Lt+s (i)1+ν

1 + ν
di

]
, (20)
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subject to a sequence of budget constraint

∫ 1

0

Pt (i) Ct (i) di + Bt + Tt ≤ Rt−1Bt−1 + Πt +

∫ 1

0

Wt (i) Lt (i) di. (21)

Bt represents government bonds, Tt denotes lump-sum taxes and transfers, Rt is the
gross nominal interest rate, and Πt are the profits that firms pay to the household.
Ct is a Dixit-Stigliz aggregator of differentiated consumption goods,

Ct =

[∫ 1

0

Ct(i)
1

1+θt di

]1+θt

. (22)

Pt is the associated price index, Lt (i) denotes labor of type i that is used to produce
differentiated good i, and Wt (i) is the corresponding nominal wage. The coefficients
h and ν set the degree of internal habit formation and the inverse Frisch elasticity
of labor supply, respectively. Finally, bt and θt are exogenous shocks that follow the
stochastic processes

log bt = ρb log bt−1 + εb,t (23)

log θt = (1− ρθ) log θ + ρθ log θt−1 + εθ,t.

The random variable bt is an inter-temporal preference shock perturbing the discount
factor, and θt can be interpreted as a shock to the firms’ desired mark-up.

Each differentiated consumption good is produced by a monopolistically compet-
itive firm using a linear production function,

Yt(i) = AtLt(i), (24)

where Yt (i) denotes the production of good i, and At represents aggregate labor
productivity. We model At as a unit root process with a growth rate zt ≡ log(At/At−1)
that follows the exogenous process

zt = (1− ρz)γ + ρzzt−1 + εz,t. (25)

As in Calvo (1983), at each point in time a fraction ξ of firms cannot re-optimize
their prices and simply indexes them to the steady-state value of inflation. Subject to
the usual cost-minimization condition, a re-optimizing firm chooses its price (P̃t(i))
by maximizing the present value of future profits,

Et

∞∑
s=0

ξsδsλt+s

{
P̃t(i)π

sYt+s(i)−Wt+s (i) Lt+s(i)
}

, (26)

where π is the gross rate of inflation in steady state and λt+s is the marginal utility
of consumption.

27



The monetary authority sets short-term nominal interest rates according to a
Taylor rule,

Rt

R
=

(
Rt−1

R

)ρR

[(
π̄4,t

(π∗t )
4

)φπ
4

(
Yt

Y ∗
t

)φY

]1−ρR

eεR,t . (27)

The central bank smooths interest rates and responds to two gaps, the deviation of
annual inflation (π̄4,t) from a time-varying inflation target and the difference between
output and its flexible price level. R is the steady-state value for the gross nominal
interest rate and εR,t is a monetary policy shock that we assume to be i.i.d.

Following Ireland (2007), we model the inflation target π∗t as an exogenous random
process,

log π∗t = (1− ρ∗) log π + ρ∗ log π∗t + ε∗,t. (28)

There are many reasons that the Central Bank’s inflation target might vary over
time. Our preferred one is that the central bank endogenously adjusts its target as it
learns about the structure of the economy. For instance, Sargent (1999), Cogley and
Sargent (2005), Primiceri (2006), and Sargent, Williams, and Zha (2006) hypothesize
that changing beliefs about the output-inflation tradeoff generated a pronounced
low-frequency, hump-shaped pattern in inflation. We approximate outcomes of this
learning process by an exogenous random variable like (28).16

6.2 Model solution and observation equation

Since the technology process At is assumed to have a unit root, consumption, real
wages, and output evolve along a stochastic growth path. To solve the model, we first
rewrite it in terms of deviations of these variables from the technology process. Then
we solve the log-linear approximation of the model around the non-stochastic steady
state. We specify the vector of observable variables as [log Yt − log Yt−1, πt, Rt]. For
estimation, we use data on per-capita GDP growth, the quarterly growth rate of the
GDP deflator, and the Federal funds rate.17

6.3 Bayesian inference and priors

We use Bayesian methods to characterize the posterior distribution of the model’s
structural parameters.18 Table 3 reports our priors. These priors are relatively dis-
perse and are broadly in line with those adopted in previous studies (see, for instance,
Del Negro et al. 2007 or Justiniano and Primiceri 2007). But a few items deserve
discussion.

16By way of analogy, technology is also endogenous, but macroeconomists often model it as an
exogenous random variable.

17These variables are standard for estimating small-scale DSGE models (see, for instance, Boivin
and Giannoni 2006).

18See appendix B.
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Table 3: Priors for Structural Parameters

Coefficient Prior

ν
θ − 1
100γ

100 (π − 1)
100 (δ−1 − 1)

h
ξ
φπ

φy

ρR

ρz

ρθ

ρ∗
ρb

100σR

100σz

100σθ

100σ∗
100σb

Density Mean Standard Deviation
Calibrated 2 −
Calibrated 0.1 −
Normal 0.475 0.025
Normal 0.5 0.1
Gamma 0.25 0.1

Beta 0.5 0.1
Beta 0.66 0.1

Normal 1.7 0.3
Gamma 0.3 0.2

Beta 0.6 0.2
Beta 0.4 0.2
Beta 0.6 0.2

Calibrated 0.995 −
Beta 0.6 0.2

Inverse Gamma 0.15 1
Inverse Gamma 1 1
Inverse Gamma 0.15 1

Uniform 0.075 0.0433
Inverse Gamma 1 1

• We fix two parameters because they are not identified. In particular, we set the
Frisch elasticity of labor supply (1/ν) to 0.5 and the steady-state price mark-up
(θ − 1) to 10%.

• For all but two persistence parameters, we use a Beta prior with mean 0.6
and standard deviation 0.2. One exception concerns labor productivity, which
already includes a unit root. For this reason, we center the prior for the autocor-
relation of its growth rate (ρz) at 0.4. The other exception is the autocorrelation
of the inflation target shock, which we calibrate to 0.995. In other words, we
restrict π∗t so that it captures low-frequency movements in inflation.19

• The standard deviation of the innovation to the inflation target is a crucial
parameter in our analysis because it governs the rate at which π∗t drifts. We
want a weakly informative prior in order to let the data dominate the posterior.
Accordingly, we adopt a uniform prior on (0,0.15). For the standard deviations
of the other shocks, we follow Del Negro et al. (2007) by choosing priors that

19We do not set ρ∗ = 1 because the DSGE model would not admit a non-stochastic steady state
and the log-linearization would not be possible in that case.
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are fairly disperse and that generate realistic volatilities for the endogenous
variables.

• Finally, we truncate the prior at the boundary of the determinacy region.

6.4 Estimation Results

We estimate the model separately on two subsamples. The first, 1960:I - 1979:II,
corresponds approximately to the period of rising inflation before the Volcker chair-
manship. The second period, 1982:IV - 2006:IV, corresponds to the Volcker and
Greenspan chairmanships, excluding the years of monetary targeting, for which the
Taylor rule might not represent an appropriate description of systematic monetary
policy (see, for instance, Sims and Zha 2006 or Hanson 2006).

Figure 18 presents the model-implied evolution of the Central Bank inflation ob-
jective. Notice that it resembles quite closely the VAR-based estimate of the perma-
nent component of inflation plotted in figure 1.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

2

4

6

8

10

12

14
GDP deflator
π*

Figure 18: The Central Bank’s Inflation Target

Table 4 reports estimates of the structural parameters. While many coefficients
are similar across subsamples, there are some important differences. For example,
we find that the Taylor-rule coefficient for inflation (φπ) increased from 1.55 in the
first subsample to 1.78 in the second. While an increase is consistent with findings of
Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide (2004), we do not find
values of φπ in the pre-1980 period as low as they do. This might be due to the fact
that, for simplicity, we have ruled out indeterminacy a priori. Another possibility is
that the presence of a time varying inflation target reduces the differences between
the reaction to inflation in the two subsamples.
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Table 4: Posteriors for Structural Parameters

Coefficient 1960-1979 1982-2006

100γ
100 (π − 1)

100 (δ−1 − 1)
h
ξ
φπ

φy

ρR

ρz

ρθ

ρb

100σR

100σz

100σθ

100σ∗
100σb

Median 25th pct 75th pct
0.468 0.452 0.484
0.501 0.435 0.566
0.159 0.121 0.204
0.445 0.390 0.502
0.782 0.741 0.818
1.557 1.372 1.746
0.643 0.541 0.772
0.704 0.630 0.759
0.264 0.156 0.390
0.598 0.515 0.676
0.699 0.632 0.758
0.160 0.147 0.174
0.641 0.527 0.797
0.118 0.097 0.139
0.081 0.062 0.104
2.533 2.226 2.889

Median 25th pct 75th pct
0.484 0.467 0.500
0.516 0.452 0.581
0.255 0.199 0.319
0.526 0.482 0.568
0.800 0.762 0.835
1.784 1.598 1.974
0.66 0.562 0.784
0.633 0.576 0.686
0.297 0.191 0.415
0.255 0.182 0.344
0.876 0.850 0.898
0.069 0.063 0.076
0.493 0.426 0.562
0.126 0.114 0.137
0.049 0.037 0.065
2.429 2.146 2.785

A second notable change in monetary policy concerns the innovation variances for
the two shocks, ε∗,t and εR,t. According to our estimates, both declined substantially
after the Volcker disinflation. The innovation variance for the shock to target inflation
fell by almost 50 percent, from 0.081 to 0.049, while the variance for the funds-
rate shock declined even more, from 0.16 to 0.07. The decline in σ∗ should not be
surprising, given the findings of Stock and Watson (2007) and our VAR statistical
results. It contributes directly to the decline in inflation volatility after 1980.

Among the nonpolicy parameters, most change only slightly across the two sam-
ples. This is comforting because these parameters are supposed to be invariant to
changes in monetary policy. One exception is the persistence parameter ρθ for the
cost-push shock, which declines from 0.6 to 0.25. Thus, the cost-push shock is less
persistent and has smaller unconditional variance after 1982. This decline might re-
flect the reduced incidence of oil-price shocks in the second half of the period. If that
is correct, the estimates capture elements of good luck as well as improved policy.

Table 5 summarizes the model’s implications for inflation volatility, persistence,
and predictability at the posterior median of the model parameters. Column 1 re-
ports the unconditional standard deviation of inflation, while columns 2−4 report R2

statistics for inflation-gap predictability for forecasting horizons of 1, 4 and 8 quar-
ters.20 Notice that, in line with our statistical VAR findings, the model reproduces

20The inflation gap here is defined as the difference between inflation and the central bank inflation
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well the substantial decline in volatility, persistence and predictability of inflation.
All decrease by roughly 50 to 70 percent.21

Table 5: Implications of the DSGE Model for Inflation Volatility and
Predictability

100 · std (π̂t) R2
1 R2

4 R2
8 Slope

1960:I - 1979:II 4.702 0.631 0.433 0.409 0.132
1982:IV - 2006:IV 2.354 0.206 0.136 0.124 0.040
Percent Change −50 −67 −69 −70 −70

Finally, column 5 addresses the results of Atkeson and Ohanian (2001). Here we
report the model-implied slope β of the Phillips curve,

Et

(̂̄π4,t+4 − ̂̄π4,t

)
= β

(
Ŷt − Ŷ ∗

t

)
+ εt,t+4.

We do not include a constant because the variables of the regression all have mean
zero in the model. Except for the fact that we replace the unemployment rate with
the output gap, this is the regression estimated by Atkeson and Ohanian (2001).
Consistent with their results, those of Stock and Watson, and our own results reported
above, our model implies a substantial decline in the predictive power of real-activity
variables in conventional Phillips curve regressions after the Volcker disinflation.

6.5 Counterfactuals

In line with the statistical VAR findings, the DSGE model reproduces much of
the substantial decline in volatility, persistence, and predictability of inflation. We
are sufficiently encouraged by its performance to use the DSGE model to explore the
structural sources of these changes.

In this subsection, we conduct some counterfactual exercises in order to under-
stand the causes of the decline in inflation volatility, persistence, and predictability.
In the first experiment, we combine the Taylor-rule coefficients ([φπ, φy, ρR, σR, σ∗])
of the second subsample with the private-sector parameters of the first. In this way,
we assess the extent to which better monetary policy would have reduced inflation
volatility and persistence during the Great Inflation. In the second experiment, we
combine the private-sector parameters of the second subsample with the policy pa-
rameters of the first. This scenario illustrates the contribution of nonpolicy factors
to the improvement in inflation outcomes.

objective that, in the DSGE model, captures the permanent component of inflation.
21Since we estimate the model on two separate subsamples, the joint posterior distribution of the

coefficients of the first and second subsample is not available. Therefore, we cannot report standard
errors.
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Table 6 reports the results. The numbers recorded there represent the proportion
of the total change across subsamples accounted for by the hypothetical structural
shift,

100× counterfactual change

total change
.

Positive numbers signify that the counterfactual goes in the same direction as the
total change, and negative numbers mean that it goes in the opposite direction.

Table 6: Counterfactual Exercises Based on the DSGE Model

Coefficients volatility
persistence
R2

1 R2
4 R2

8

Slope (β)

Policy 2, Private 1 75 43 90 91 -94
σ∗ 69 32 68 69 -46
φπ 9 13 28 28 -27

Private 2, Policy 1 36 43 15 14 125
ρθ 7 -39 -109 -111 121

Monetary policy seems to be the most important factor behind the decline in
inflation volatility. The change in policy rule accounts for 75 percent of the decline in
inflation volatility. In contrast, better luck – primarily in the form of a less volatile
and persistent cost-push shock – accounts for 36 percent of the decline. This is a
substantial contribution, but only about half the magnitude of the effect of monetary
policy.22

The results for predictability are similar, especially at the 4 and 8 quarter horizons.
At those horizons, better monetary policy accounts for approximately 90 percent of
the decline, while changes in private-sector behavior account for around 15 percent.
At the 1-quarter horizon, however, the two factors contribute equally to the decline
in predictability, each accounting for 43 percent of the total change.

The second and third rows of the table 6 look more closely at particular aspects
of monetary policy. Here we change a single Taylor-rule parameter, holding all other
coefficients equal to the estimated value from subsample 1. Otherwise the experiments
are the same as before.

Among monetary-policy coefficients, changes in the variability of the inflation
objective (σ∗) and in the reaction to inflation (φπ) have the largest impact on inflation
outcomes. The more stable inflation objective is responsible for the largest portion of
the decline in inflation volatility and persistence, accounting for roughly two-thirds

22The two numbers need not sum to 100 because the model is nonlinear in the coefficients and,
therefore, the total change is not the sum of the effects of the policy and nonpolicy coefficients shift.
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of the total change. This is because changes in the Central Bank’s inflation target
generate persistent deviations of the nominal interest rate and marginal cost from the
steady state. In turn, this induces persistent deviations of inflation from the target,
i.e., a persistent component in the inflation-gap. Hence, a decline in the volatility of
the inflation target reduces the overall persistence of the inflation-gap by reducing
the relative importance of the persistent component.

Another important contributor is stronger monetary-policy reaction to inflation.
In our model, however, this is secondary to enhanced stability of the inflation target,
accounting for about 10 percent of the decline in volatility and 13-28 percent of the
decline in predictability. One reason that we might be finding a smaller contribution
than has been found by others (e.g., Benati and Surico 2007) is that we truncate our
prior on the boundary of the determinacy region. Thus, our feedback parameter rises
from 1.56 to 1.78. Enhanced feedback plays a role in our model, but not the primary
role.

We also look more closely at the particular aspects of private-sector behavior
that have the greatest influence on changing inflation outcomes. Among nonpolicy
parameters, the key change is the shift in the persistence of the mark-up shock. The
final row of table 6 sheds light on its contribution. Everything else equal, the decline
in persistence of the mark-up shock (ρθ) would have induced an increase in inflation-
gap persistence. This might seem surprising but has a simple explanation: a reduction
in ρθ corresponds to a decrease in the unconditional variability of the mark-up shock,
which reduces the volatility of inflation due to this shock. As a consequence, the role
of the inflation-target shock for inflation becomes relatively larger, and this increases
persistence.

The final column of table 6 examines how changes in monetary policy and private-
sector parameters contribute to the flattening of the slope in an Atkeson-Ohanian
regression. Recall that the DSGE model predicts a decline in β from 0.13 to 0.04
across the two subsamples. In this case, the relative importance of better policy
and better luck are reversed. Changes in private sector parameters go in the right
direction and overpredict the total decline. Conditional on the mark-up shock, the
output gap and future changes in the inflation rate comove positively. The drop in
persistence and unconditional volatility of the mark-up shock reduces this positive
comovement and results in a lower estimate of the slope coefficient. But changes in
policy parameters go in the wrong direction and predict a substantial increase in β.
Thus, for a complete picture of the change in inflation outcomes, both private and
policy factors are needed.
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7 Concluding remarks

This paper reports what autoregressions with drifting coefficients and stochastic
volatility say about the persistence of the inflation gap defined as the fraction of vari-
ation of future inflation gaps that is due to past shocks. A high proportion means
that past shocks retain influence for a long time, while a low proportion signifies that
their influence decays quickly. Since past shocks give rise to forecastable variation
in future inflation gaps, our concept of persistence is closely related to predictability.
VAR estimates point to a statistically significant increase in inflation-gap predictabil-
ity during the Great Inflation and to a statistically significant decline in predictability
after the Volcker disinflation. Univariate estimates are mixed, with significant evi-
dence of a rise and fall in persistence for PCE inflation and marginal evidence for
GDP inflation.

We have used a new Keynesian DSGE model to examine what caused these
changes. We find evidence that both better policy and better luck – in the form
of less volatile and less persistent cost-push shocks – contributed to improved infla-
tion outcomes. The enhanced stability of the Fed’s long-run inflation target stands
as key improvement in policy. In our DSGE model, this is the single most important
factor behind the reduction in inflation volatility and persistence.

The DSGE model treats the inflation target as an exogenous random process.
Explaining why it drifts is a priority for future research. Our preferred story involves
learning and changing central bank beliefs about the structure of the economy (Cogley
and Sargent 2005b, Primiceri 2006, and Sargent, Williams, and Zha 2006), but more
work is needed to understand this aspect of monetary policy.

A Markov chain Monte Carlo algorithm for simu-

lating the VAR posterior

For the VAR, the posterior density is23

p(θT , HT
y , HT

s , By, Bs, σy, σs|Y T ). (29)

The state and measurement innovation variances are defined as

Qt = (B−1
s )′Hst(B

−1
s ), (30)

Rt = (B−1
y )′Hyt(B

−1
y ),

respectively, where Hst and Hyt are diagonal matrices with univariate stochastic
volatilities along the main diagonal and Bs and By are triangular matrices with

23The MCMC algorithm for the univariate AR is a special case of that for the VAR.
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ones along the main diagonal and static covariance parameters below. The univari-
ate stochastic volatilities are geometric random walks; the vectors σs and σy list their
innovation variances. The notation xT represents the complete history of xt.

We use a ‘Metropolis-within-Gibbs’ algorithm to simulate the posterior. The
parameters are partitioned into 7 blocks:

• θT |HT
y , HT

s , By, Bs, σy, σs, Y
T

• HT
y |θT , HT

s , By, Bs, σy, σs, Y
T

• By|θT , HT
y , HT

s , Bs, σy, σs, Y
T

• σy|θT , HT
y , HT

s , By, Bs, σs, Y
T

• HT
s |θT , HT

y , By, Bs, σy, σs, Y
T

• Bs|θT , HT
y , HT

s , By, σy, σs, Y
T

• σs|θT , HT
y , HT

s , By, Bs, σy, Y
T

After substituting Qt for Q, the samplers for the first four blocks are identical to
those in Cogley and Sargent (2005a); details can be found there. Those for the last
three blocks – which pertain to the state innovation variance Qt – are isomorphic to
the three blocks for the measurement innovation variance Rt. Thus, the appendices
in Cogley and Sargent (2005a) cover those blocks as well.

We executed 100,000 scans of the chain and diagnosed convergence by inspecting
recursive mean plots of the parameters. We discarded the first 50,000 scans to allow
for burn in. The results reported in the text are based on the remaining 50,000 scans.

A.1 Priors for the VAR

The priors are similar to those in Cogley and Sargent (2005a). We assume that the
hyperparameters and initial value of the drifting parameters are independent across
blocks, so that the joint prior factors into a product of marginal priors. Each of the
marginal priors is selected from a family of natural conjugate priors and is specified
to proper yet weakly informative.

The unrestricted prior for the initial state is Gaussian,

f(θ0) ∝ N (θ̄, P̄ ), (31)

where θ̄ and P̄ are the OLS point estimate and asymptotic variance, respectively,
based on a training sample covering the period 1948-58. Because the training sample
is short, the asymptotic variance is large, making the prior weakly informative for θ0.
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Priors for the blocks governing Rt are also calibrated to put considerable weight
on sample information. The prior for H ii

y0 is log-normal,

f
(
ln H ii

y0

)
= N (ln Rii

0 , 10), (32)

where ln Rii
0 is the estimate of the log of residual variance of variable i from the

preliminary sample. A variance of 10 is huge on a log scale and allows a wide range
of values for hi0. As is the case for θ0, the prior mean for Hy0 is no more than a
ballpark number surrounded by considerable uncertainty.

Similarly, the prior for βy is normal with mean zero and a large variance,

f (β) = N (0, 10000 · I). (33)

Lastly, the prior for σ2
yi, the variance of the stochastic volatility innovations, is inverse-

gamma
f(σ2

i ) = IG(δi/2, 1/2), (34)

with scale parameter δ = 0.0001 and degree-of-freedom parameter equal to 1. This
distribution is proper but has fat tails.

The priors for the blocks governing Qt parallel those for Rt. The prior for H i
Q0 is

also log-normal,
f

(
ln H ii

Q0

)
= N (ln Qii

0 , 10), (35)

where Q0 = γ2P̄ is calibrated in the same way as in Cogley and Sargent (2005a).
Similarly, the priors for βQ and σQ have the same form as those for βy and σy. We
just alter the dimensions so that they conform to HQt instead of HRt. The prior mean
for HQ0 induces only a slight degree of time variation in θt, but in other respects the
priors are sufficiently uninformative that they permit a wide range of outcomes for
Qt.

B Markov chain Monte Carlo algorithm for simu-

lating the DSGE posterior

As in An and Schorfheide (2006), we use a Metropolis-Hastings algorithm to
simulate the posterior distribution of the coefficients of the DSGE model. Let yT

denote the set of available data and α the vector of coefficients of the DSGE model.
Moreover, let α(j) denote the jth draw from the posterior of α. The subsequent draw
is obtained by drawing a candidate value, α̃, from a Gaussian proposal distribution
with mean α(j) and variance s · V . We then set α(j+1) = α̃ with probability equal to

min

{
1,

p
(
α̃|yT

)

p (α(i)|yT )

}
. (36)
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If the proposal is not accepted, we set α(j+1) = α(j).
The posterior distribution for α, p

(
α|yT

)
, can be computed multiplying the

prior density by the likelihood function. Because the DSGE model has a linear-
Gaussian state-space representation, the likelihood function can be evaluated using
the prediction-error decomposition and the Kalman filter.

The algorithm is initialized around the posterior mode, found using a standard
maximization algorithm. We set V to the inverse Hessian of the posterior evaluated
at the mode, while s is chosen in order to achieve an acceptance rate approximately
equal to 25 percent. We run two chains of 70,000 draws and discard the first 20,000
to allow convergence to the ergodic distribution.
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