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I Introduction

The main theme of this paper is that investors dislike surprise inflation not only because it lowers

the payoff on nominal bonds, but also because it is bad news for future consumption growth. The

fact that nominal bonds pay off little precisely when the outlook on the future worsens makes them

unattractive assets to hold. The premium that risk averse investors seek as compensation for inflation

risk should thus depend on the extent to which inflation is perceived as a carrier of bad news.

One implication is that the nominal yield curve slopes upward: long bonds pay off even less than

short bonds when inflation, and hence bad news, arrives. Therefore, long bonds command a term

spread over short bonds. Moreover, the level of interest rates and term spreads should increase in

times when inflation news are harder to interpret. This is relevant for periods such as the early 1980s,

when the joint dynamics of inflation and growth had just become less well understood.

We study the effect of inflation as bad news in a simple representative agent asset pricing model

with two key ingredients. First, investor preferences are described by recursive utility. One attractive

feature of this preference specification is that – in contrast to the standard time-separable expected

utility model – it does not imply indifference to the temporal distribution of risk. In particular, it

allows investors to prefer a less persistent consumption stream to a more persistent stream, even

if overall risk of the two streams is the same. In our context, aversion to persistence generates a

heightened concern with news about the future and makes investors particularly dislike assets that

pay off little when bad news arrives.

The second ingredient of the model is a description of how investor beliefs about consumption

and inflation evolve over time. Investor beliefs determine to what extent inflation is perceived to

carry bad news at a particular point in time. We consider various specifications, some of which take

into account structural change in the relationship between consumption growth and inflation over

the postwar period in the United States. Given investor beliefs about these two fundamentals, we

determine interest rates implied by the model from the intertemporal Euler equation.

We perform two broad classes of model exercises. First, we consider stationary rational expecta-

tions versions of the model. Here we begin by estimating a stochastic process for U.S. consumption

growth and inflation over the entire postwar period. We assume that investor beliefs are the condition-
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als of this process, and derive the properties of the model-implied yield curve. The estimated process

in this benchmark exercise has constant conditional variances. As a result, all asset price volatility

derives from changes in investors’ conditional expectations. In particular, the dynamics of yields is

entirely driven by movements in expected consumption growth and inflation.

The benchmark model captures a number of features of observed yields. Both model implied

and observed yields contain a sizeable low frequency component (period > 8 years) that is strongly

correlated with inflation. At business cycle frequencies (between 1.5 and 8 years), both the short rate

and the term spread are driven by the business cycle component of inflation, which covaries positively

with the former and negatively with the latter. Both a high short rate and a low term spread forecast

recessions, that is, times of low consumption growth. Finally, average yields are increasing, and yield

volatility is decreasing, in the maturity of the bond.

The fact that the model implies an upward-sloping nominal yield curve depends critically on

both preferences and the distribution of fundamentals. In the standard expected utility case, an asset

commands a premium over another asset only when its payoff covaries more with consumption growth.

Persistence of consumption growth and inflation then implies a downward sloping yield curve. When

investors exhibit aversion to persistence, an assets commands a premium also when its payoff covaries

more with news about future consumption growth. The estimated process implies that inflation

brings bad news. The implied correlation between growth and inflation is critical; if inflation and

consumption growth were independent, the yield curve would slope downward even if investors are

averse to persistence.

The role of inflation as bad news suggests that other indicators of future growth might matter for

term premia. Moreover, one might expect the arrival of other news about growth or inflation to make

yields more volatile than they are in our benchmark model. In a second exercise, we maintain the

rational expectations assumption, but model investors’ information set more explicitly by exploiting

information contained in yields themselves. In particular, we begin by estimating an unrestricted

stochastic process for consumption growth, inflation, the short rate, and the term spread. We then

derive model-implied yields given the information set described by this stochastic process.

The resulting model-implied yields are very similar to those from our benchmark. It follows

that, viewed through the lens of our consumption-based asset pricing model, inflation itself is the key
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predictor of future consumption, inflation, and yields that generates interest rate volatility. Conditional

on our model, we can rule out the possibility that other variables – such as investors’ perception of

a long run inflation target, or information inferred from other asset prices – generates volatility in

yields. Indeed, if observed yields had been generated by a version of our model in which investors

price bonds using better information than we modelers have, our exercise would have recovered that

information from yields.

We also explore the role of inflation as bad news in a class of models that accommodate investor

concern with structural change. Here we construct investor beliefs by sequentially estimating the

stochastic process for fundamentals. We use a constant gain adaptive learning scheme where the

estimation for date t places higher weight on more recent observations. The investor belief for date t is

taken to be the conditional of the process estimated with data up to date t. We then compute a sample

of model-implied yields from the Euler equations, using a different investor belief for each date. We

apply this model to consider changes in yield curve dynamics, especially around the monetary policy

experiment.

It has been suggested that long interest rates were high in the early 1980s because investors at the

time were only slowly adjusting their inflation expectations downward. In the context of our model,

this is not a plausible story. Indeed, it is hard to write down a sensible adaptive learning scheme in

which the best forecast of future inflation is not close to current inflation. Since inflation fell much

more quickly in the early 1980s than nominal interest rates, our learning schemes do not generate

much inertia in inflation expectations. At the same time, survey expectations of inflation also fell

relatively quickly in the early 1980s, along with actual inflation and the forecasts in our model.

We conclude that learning can help understand changes in the yield curve only if it entails changes

in subjective uncertainty that have first order effects on asset prices. In a final exercise, we explore one

scenario where this happens. In addition to sequential estimation, we introduce parameter uncertainty

which implies that investors cannot easily distinguish permanent and transitory movements in inflation.

With patient investors who are averse to persistence, changes in uncertainty then have large effects

on interest rates and term spreads. In particular, the uncertainty generated by the monetary policy

experiment leads to sluggish behavior in interest rates, especially at the long end of the yield curve,

in the early 1980s.
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A by-product of our analysis is a decomposition into real and nominal interest rates, where the

former are driven by expected consumption growth, whereas the latter also move with changes in

expected inflation. Importantly, inflation as an indicator of future growth affects both nominal and

real interest rates. Loosely speaking, our model says that yields in the 1970s and early 1980s were

driven by nominal shocks – inflation surprises – that affect nominal and real rates in opposite directions.

Here an inflation surprise lowers real rates because it is bad news for future consumption growth. In

contrast, prior to the 1970s, and again more recently, there were more real shocks – surprises in

consumption growth – that make nominal and real interest rates move together.

Our model also predicts a downward sloping real yield curve. In contrast to long nominal bonds,

long indexed bonds pay off when future real interest rates – and hence future expected consumption

growth – are low, thus providing insurance against bad times. Coupled with persistence in growth, this

generates a downward sloping real yield curve in an expected utility model. The effect is reinforced

when investors are averse to persistence. Unfortunately, the available data series on U.S. indexed

bonds, which is short and comes from a period of relatively low interest rates, makes it difficult to

accurately measure average long indexed yields. However, evidence from the United Kingdom suggests

that average term spreads are positive for nominal, but negative for indexed bonds.

The paper is organized as follows. Section II presents the model, motivates our use of recursive

utility and outlines the yield computations. Section III reports results from the benchmark rational

expectations version of the model. Section IV maintains the rational expectations assumption, but

allows for more conditioning information. Section V introduces learning. Section VI reviews related

literature. Appendix A collects our estimation results. Appendix B presents summary statistics about

real rate data from the US and the UK. Appendix C contains results with alternative data definitions

and estimation strategies.

II Model

We consider an endowment economy with a representative investor. The endowment – denoted {Ct}
since it is calibrated to aggregate consumption – and inflation {πt} are given exogenously. Equilibrium

prices adjust such that the agent is happy to consume the endowment. In the remainder of this section,

we define preferences and explain how yields are computed.
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A. Preferences

We describe preferences using the recursive utility model proposed by Epstein and Zin (1989) and

Weil (1989), which allows for a constant coefficient of relative risk aversion that can differ from the

reciprocal of the intertemporal elasticity of substitution (IES). This class of preferences is now common

in the consumption-based asset pricing literature. Campbell (1993, 1996) derives approximate loglinear

pricing formulas (that are exact if the IES is one) to characterize premia and the price volatility of

equity and real bonds. Duffie, Schroeder, and Skiadas (1997) derive closed-form solutions for bond

prices in a continuous time version of the model. Restoy and Weil (1998) show how to interpret the

pricing kernel in terms of a concern with news about future consumption. For our computations, we

assume a unitary IES and homoskedastic lognormal shocks, which allows us to use a linear recursion

for utility derived by Hansen, Heaton, and Li (2005).

We fix a finite horizon T and a discount factor β > 0. The time t utility Vt of a consumption

stream {Ct} is defined recursively by

(1) Vt = C1−αt
t CEt (Vt+1)

αt ,

with VT+1 = 0. Here the certainty equivalent CEt imposes constant relative risk aversion with coeffi-

cient γ,

CEt (Vt+1) = Et

(
V

1−γ
t+1

)1/(1−γ)
,

and the sequence of weights αt is given by

(2) αt :=
T−t∑
j=1

βj

/
T−t∑
j=0

βj .

If β < 1, the weight αt on continuation utility converges to β as the horizon becomes large. If γ = 1,

the model reduces to standard logarithmic utility. More generally, the risk aversion coefficient can be

larger or smaller than one, the (inverse of the) intertemporal elasticity of substitution.

6



Discussion

Recursive preferences avoid the implication of the time-separable expected utility model that de-

cision makers are indifferent to the temporal distribution of risk. A standard example, reviewed by

Duffie and Epstein (1992), considers a choice at some date zero between two risky consumption plans

A and B. Both plans promise contingent consumption for the next 100 periods. Under both plans,

consumption in a given period can be either high or low, with the outcome determined by the toss

of a fair coin. However, the consumption stream promised by plan A is determined by repeated coin

tosses: if the toss in period t is heads, consumption in t is high, otherwise consumption in t is low. In

contrast, the consumption stream promised by plan B is determined by a once and for all coin toss

at date 1: if this toss is heads, consumption is high for the next 100 periods, otherwise, consumption

is low for the next 100 periods.

Intuitively, plan A looks less risky than plan B. Under plan B, all eggs are in one basket, whereas

plan A is more diversified. If all payoffs were realized at the same time, risk aversion would imply a

preference for plan A. However, if the payoffs arrive at different dates, the standard time-separable

expected utility model implies indifference between A and B. This holds regardless of risk aversion

and of how little time elapses between the different dates. The reason is that the time-separable model

evaluates risks at different dates in isolation. From the perspective of time zero, random consumption

at any given date – viewed in isolation – does have the same risk (measured, for example, by the

variance.) What the standard model misses is that the risk is distributed differently over time for the

two plans: plan A looks less risky since the consumption stream it promises is less persistent.

According to the preferences (1), the plans A and B are ranked differently if the coefficient of

relative risk aversion γ is not equal to one. In particular, γ > 1 implies that the agent is averse to the

persistence induced by the initial shock that characterizes plan B and therefore prefers A. This is the

case we consider in this paper. When γ < 1, the agent likes the persistence and prefers B.

Another attractive property of the utility specification (1) is that the motives that govern con-

sumption smoothing over different states of nature and consumption smoothing over time are allowed

to differ. For example, an agent with recursive utility and γ > 1 would not prefer an erratic deter-

ministic consumption stream A to a constant stream B. Indeed, there is no reason to assume why the

two smoothing motives should be tied together like in the power utility case, where the risk aversion
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coefficient γ is the reciprocal of the elasticity of intertemporal substitution. After all, the notion of

smoothing over different states even makes sense in a static economy with uncertainty, while smoothing

over time is well defined in a dynamic but deterministic economy.

We specify a (long) finite horizon T because we want to allow for high discount factors, β > 1.

There is no a priori reason to rule out this case. The usual justification for low discount factors is

introspection: when faced with a constant consumption stream, many people would prefer to shift

some consumption into the present. While this introspective argument makes sense in the stochastic

environment in which we actually live – where we may die before we get to consume, and so we want

to consume while we still can – it is not clear whether the argument should apply to discounting in a

deterministic environment with some known horizon (which is the case for which the discount factor

β is designed.)

Pricing kernel

We divide equation (1) by current consumption to get

Vt

Ct
= CEt

(
Vt+1

Ct+1

Ct+1

Ct

)αt

.

Taking logarithms, denoted throughout by small letters, we obtain the recursion

vt − ct = αt lnCEt [exp (vt+1 − ct+1 + Δct+1)] .

Assuming that the variables are conditionally normal, we get

(3) vt − ct = αt Et (vt+1 − ct+1 + Δct+1) + αt
1
2

(1 − γ) vart (vt+1) .

Solving the recursion forward and using our assumption that the agent’s beliefs are homoskedastic,

we can express the log ratio of continuation utility to consumption as an infinite sum of expected

discounted future consumption growth,

(4) vt − ct =
T−t∑
i=0

αt,1+i Et (Δct+1+i) + constant.

For β < 1 and T = ∞, the weights on expected future consumption growth are simply αt,i = βi. Even
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for large finite T, equation (4) can be viewed as a sum of expected consumption growth with weights

that are independent of the forecasting horizon 1 + i.

For finite T , the weights αt,i are given by

αt,i :=
T−t∑
j=i

βj

/
T−t∑
j=0

βj ,

so that αt,1 = αt. For β > 1, the weights on expected future consumption growth are decreasing

and concave in the forecast horizon i. For large T , they remain equal to one for many periods. If

consumption growth reverts to its mean – that is, Et (Δct+1+i) converges to the unconditional mean

of consumption growth as i becomes large – then the log ratio of continuation utility is approximately

given by the infinite-horizon undiscounted sum of expected consumption growth.

Payoffs denominated in units of consumption are valued by the real pricing kernel

(5) Mt+1 = β

(
Ct+1

Ct

)−1 ( Vt+1

CEt (Vt+1)

)1−γ

.

The random variable Mt+1 represents the date t prices of contingent claims that pay off in t + 1. In

particular, the price of a contingent claim that pays off one unit if some event in t + 1 occurs is equal

to the expected value of the pricing kernel conditional on the event, multiplied by the probability of

the event. In a representative agent model, the pricing kernel is large over events in which the agent

will feel bad: claims written on such events are particularly expensive.

Again using normality, we obtain the log real pricing kernel

mt+1 = ln β − Δct+1 − (γ − 1) (vt+1 − Et (vt+1))(6)

−1
2

(1− γ)2 vart (vt+1)

= ln β − Δct+1 − (γ − 1)
T−t−1∑

i=0

αt+1,i (Et+1 − Et)Δct+1+i

−1
2

(γ − 1)2 vart

(
T−t−1∑

i=0

αt+1,i Et+1 (Δct+1+i)

)
.

The logarithmic expected utility model (the case γ = 1) describes “bad events” in terms of future

realized consumption growth – the agent feels bad when consumption growth is low. This effect is
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represented by the first term in the pricing kernel. Recursive utility introduces a new term that

reflects a concern with the temporal distribution of risk. In the case we consider, γ > 1, the agent

fears downward revisions in consumption expectations. More generally, a source of risk is not only

reflected in asset prices if it makes consumption more volatile, as in the standard model, but it can also

affect prices if it affects only the temporal distribution of risk, for example if it makes consumption

growth more persistent.

Finally, we define the log nominal pricing kernel, that we use below to value payoffs denominated

in dollars:

(7) m$
t+1 = mt+1 − πt+1.

B. Nominal and Real Yield Curves

The agent’s Euler equation for a real bond that pays 1 unit of consumption n periods later determines

its time-t price P
(n)
t as the expected value of its payoff tomorrow weighted by the real pricing kernel:

(8) P
(n)
t = Et

(
P

(n−1)
t+1 Mt+1

)
= Et

(
n∏

i=1

Mt+i

)
.

This recursion starts with the one-period bond at P
(1)
t = Et [Mt+1] . Under normality, we get in logs

p
(n)
t = Et

(
p
(n−1)
t+1 + mt+1

)
+

1
2
vart

(
p
(n−1)
t+1 + mt+1

)
(9)

= Et

(
n∑

i=1

mt+i

)
+

1
2
vart

(
n∑

i=1

mt+i

)
.

The n-period real yield is defined from the relation

(10) y
(n)
t = −1

n
p
(n)
t = −1

n
Et

(
n∑

i=1

mt+i

)
− 1

n

1
2
vart

(
n∑

i=1

mt+i

)
.

For a fixed date t, the real yield curve maps the maturity n of a bond to its real yield y
(n)
t . Throughout

this paper, we assume that the agent’s beliefs are homoskedastic. To the extent that we observe

heteroskedasticity of yields in the data, we will attribute it to the effect of learning about the dynamics

of fundamentals.
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Analogously, the price of a nominal bond P
(n)$
t satisfies the Euler equation (8) with dollar signs

attached. From equations (9) and (10), we can write the nominal yield as

(11) y
(n)$
t = −1

n
p
(n)$
t = −1

n
Et

(
n∑

i=1

m$
t+i

)
− 1

n

1
2
vart

(
n∑

i=1

m$
t+i

)
.

By fixing the date t, we get the nominal yield curve as the function that maps maturity n to the

nominal yield y
(n)$
t of a bond.

Equations (9) and (10) show that log prices and yields of real bonds in this economy are determined

by expected future marginal utility. The log prices and yields of nominal bonds additionally depend

on expected inflation. To understand the behavior of yields, it is useful to decompose yields into their

unconditional mean and deviations of yields from the mean. Below, we will see that while the impli-

cations for average yields will depend on whether we assume recursive or expected (log) preferences,

the dynamics of yields – and thus volatility – will be the same for both preference specifications.

The dynamics of real yields can be derived from the conditional expectation of the real pricing

kernel (6) together with the yield equation (10). Specifically, we can write the deviations of real yields

y
(n)
t from their mean μ(n) as

(12) y
(n)
t − μ(n) =

1
n

Et

n∑
i=1

(Δct+i − μc) ,

where μc denotes the mean consumption growth rate. This equation shows that the dynamics of real

yields are driven by changes in expected future consumption growth. Importantly, these dynamics do

not depend on any preference parameters. In particular, the equation (12) is identical for recursive

utility and expected log utility. Of course, equation (12) does depend on the elasticity of intertemporal

substitution, which we have set equal to one.

Similarly, the dynamics of nominal yields can be derived from the conditional expectation of the

nominal pricing kernel (7) together with the yield equation (11). As a result, we can show that

de-meaned nominal yields are expected nominal growth rates over the lifetime of the bond

(13) y
(n)$
t − μ(n)$ =

1
n

Et

n∑
i=1

(Δct+i − μc + πt+i − μπ) .

The dynamics of real and nominal yields in equations (12) and (13) show that changes in the difference
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between nominal and real yields represent changes in expected future inflation.

The unconditional mean of the one-period real rate is

(14) μ(1) = − lnβ + μc − 1
2
vart (Δct+1) − (γ − 1) covt

(
Δct+1,

T−t−1∑
i=0

αt+1,i (Et+1 − Et)Δct+1+i

)
.

The first three terms represent the mean real short rate in the log utility case. The latter is high

when β is low, which means that the agent is impatient and does not want to save. An intertemporal

smoothing motive increases the real rate when the mean consumption growth rate μc is high. Finally,

the precautionary savings motive lowers the real rate when the variance of consumption growth is high.

With γ > 1, an additional precautionary savings motive is captured by the covariance term. It not

only lowers interest rates when realized consumption growth is more volatile, but also when it covaries

more with expected consumption growth, that is, when consumption growth is more persistent.

The mean of the nominal short rate is

μ(1)$ = μ(1) + μπ − 1
2
vart (πt+1) − covt (πt+1, Δct+1)(15)

− (γ − 1) covt

(
πt+1,

T−t−1∑
i=0

αt+1,i (Et+1 − Et)Δct+1+i

)
.

There are several reasons for why the Fisher relation fails or, put differently, for why the short rate

is not simply equal to the real rate plus expected inflation. First, the variance of inflation enters

due to Jensen’s inequality. Second, the covariance of consumption growth and inflation represents an

inflation risk premium. Intuitively, nominal bonds – including those with short maturity — are risky

assets. The real payoff from nominal bonds is low in times of surprise inflation. If the covariance

between inflation and consumption is negative, nominal bonds are unattractive assets, because they

have low real payoffs in bad times. In other words, nominal bonds do not provide a hedge against

times of low consumption growth. Investors thus demand higher nominal yields as compensation for

holding nominal bonds. Recursive utility introduces an additional reason why nominal bonds may

be unattractive for investors: their payoffs are low in times with bad news about future consumption

growth. These bonds may thus not provide a hedge against times with bad news about the future.

We define rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t − y

(1)
t as the return on buying an n-period real bond at time t

for p
(n)
t and selling it at time t + 1 for p

(n−1)
t+1 in excess of the short rate. Based on equation (9), the

12



expected excess return is

(16) Et

(
rx

(n)
t+1

)
= −covt

(
mt+1, Et+1

n−1∑
i=1

mt+1+i

)
− 1

2
vart

(
p
(n−1)
t+1

)
.

The covariance term on the right-hand size is the risk premium, while the variance term is due to

Jensen’s inequality. Expected excess returns are constant whenever conditional variances are constant,

as in our benchmark belief specification. With learning, however, the conditional probabilities that

are used to evaluate the conditional covariances in equation (16) will be derived from different beliefs

each period. As a result, expected excess returns will vary over time.

The risk premium on real bonds is positive when the pricing kernel and long bond prices are

negatively correlated. This correlation is determined by the autocorrelation of marginal utility. The

risk premium is positive if marginal utility is negatively correlated with expected changes in future

marginal utility. In this case, long bonds are less attractive than short bonds, because their payoffs

tend to be low in bad times (when marginal utility is high). The same equation also holds for nominal

bonds after we attach dollar signs everywhere. Here, the sign of the risk premium also depends on the

correlation between (nominal) bond prices and inflation. Over long enough samples, the average excess

return on an n-period bond is approximately equal to the average spread between the n-period yield

and the short rate.1 This means that the yield curve is on average upward sloping if the right-hand

side of equation (16) is positive on average.

In our model, expected changes in marginal utility depend on expected future consumption growth.

The expected excess return (16) can therefore be rewritten as

(17) Et

(
rx

(n)
t+1

)
= covt

(
mt+1, Et+1

n−1∑
i=1

Δct+1+i

)
− 1

2
vart

(
p
(n−1)
t+1

)
.

Real term premia are thus driven by the covariance of marginal utility with expected consumption
1To see this, we can write the excess return as

p
(n−1)
t+1 − p

(n)
t − y

(1)
t = ny

(n)
t − (n − 1) y

(n−1)
t+1 − y

(1)
t

= y
(n)
t − y

(1)
t − (n − 1)

(
y
(n−1)
t+1 − y

(n)
t

)
For large n and a long enough sample, the difference between the average (n − 1)-period yield and the average n-period
yield is zero.
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growth. The expected excess return equation (16) for an n-period nominal bond becomes

(18) Et

(
rx

(n)$
t+1

)
= covt

(
m$

t+1, Et+1

n−1∑
i=1

Δct+1+i + πt+1+i

)
− 1

2
vart

(
p
(n−1)$
t+1

)
.

This equation shows that nominal term premia are driven by the covariance of the nominal pricing

kernel with expected nominal growth.

III Benchmark

In this section, we derive investor beliefs from a state space system for consumption growth and

inflation that is estimated with data from the entire postwar sample. The conditional probabilities

that we use to evaluate the agent’s Euler equation, and thus to compute yields, come from this

estimated system.

Data

We measure aggregate consumption growth with quarterly NIPA data on nondurables and services

and construct the corresponding price index to measure inflation. We assume that population growth is

constant. The data on bond yields with maturities one year and longer are from the CRSP Fama-Bliss

discount bond files. These files are available for the sample 1952:2-2005:4. The short (1-quarter) yield

is from the CRSP Fama riskfree rate file. These data, our MATLAB programs, and Appendix C which

contains additional results based on alternative inflation and population series can be downloaded from

our websites.

Beliefs about Fundamentals

The vector of consumption growth and inflation zt+1 = (Δct+1, πt+1)
� has the state-space repre-

sentation

zt+1 = μz + xt + et+1(19)

xt+1 = φxxt + φxKet+1

where et+1 ∼ N (0, Ω), the state vector xt+1 is 2-dimensional and contains expected consumption and

inflation, φx is the 2×2 autoregressive matrix, and K is the 2×2 gain matrix. Our benchmark model
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assumes that the agent’s beliefs about future growth and inflation are described by this state space

system evaluated at the point estimates. Based on these beliefs, the time-t conditional expected values

in the yield equations (12) and (13) are simply linear functions of the state variables xt. We estimate

this system with data on consumption growth and inflation using maximum likelihood. Table A.1 in

Appendix A reports parameter estimates.

The state space system (19) nests a first-order Vector-Autoregression. To see this, start from the

VAR zt+1 = μz + φzt + et+1 and set xt = φ (zt − μz). This will result in a system like (19) but with

K = I (and φx = φ). Since K is a 2 × 2 matrix, setting K = I imposes four parameter restrictions,

which we can test with a likelihood ratio test. The restrictions are strongly rejected based on the

usual likelihood ratio statistic 2 × [L (θunrestricted) −L (θrestricted)] = 34.3, which is greater than the 5

percent and 1 percent critical χ2 (4) values of 9.5 and 13.3, respectively.

The reason for this rejection is that the state space system does a better job at capturing the

dynamics of inflation than the first-order VAR. Indeed, quarterly inflation has a very persistent com-

ponent, but also a large transitory component, which leads to downward biased estimates of higher

order autocorrelations in the VAR. For example, the nth-order empirical autocorrelations of inflation

are .84 for n = 1, .80 for n = 2, .66 for n = 5 and .52 for n = 10. While the state space system matches

these autocorrelations almost exactly (as we will see in Figure 1 below), the VAR only matches the

first autocorrelation and understates the others: the numbers are .84 for n = 1, .72 for n = 2, .43 for

n = 5 and .19 for n = 10.

For our purposes, high-order autocorrelations are important, because they determine long-horizon

forecasts of inflation and thus nominal yields through equation (13). By contrast, this issue is not

important for matching the long-horizon forecasts of consumption growth and thus real yields in

equation (12). The autocorrelation function of consumption growth data starts low at .36 for n = 1,

.18 for n = 2 and is essentially equal to zero thereafter. This function can be matched well with a

first-order VAR in consumption growth and inflation.

To better understand the properties of the estimated dynamics, we report covariance functions

which completely characterize the linear Gaussian system (19) . Figure 1 plots covariance functions

computed from the model and from the raw data. At 0 quarters, these lines represent variances

and contemporaneous covariances. The black lines from the model match the gray lines in the data
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Figure 1: Covariance functions computed from the estimated benchmark model and from the raw
data. Dotted lines indicate 2 × standard errors bounds around the covariance function from the data
computed with GMM. For example, the graph titled ”consumption, lagged consumption” shows the
covariance of current consumption growth with consumption growth lagged x quarters, where x is
measured on the horizontal axis.

quite well. The dotted lines in Figure 1 are 2× standard error bounds around the covariance function

estimated with raw data. These standard error bounds are not based on the model; they are computed

with GMM. (For more details, see Appendix A.) To interpret the units, consider the upper left panel.

The variance of consumption growth is .22 in model and data, which amounts to
√

.22× 42 = 1.88

percent volatility. Figure 1 shows that consumption growth is weakly positively autocorrelated. For

example, the covariance cov(Δct, Δct−1) = ρ var(Δct) = ρ × .22 = 0.08 in model and data which

implies that the first-order autocorrelation is ρ = .36. Inflation is clearly more persistent, with an

autocorrelation of 84%.

An important feature of the data is that consumption growth and inflation are negatively correlated

contemporaneously and forecast each other with a negative sign. For example, the upper right panel

in Figure 1 shows that high inflation is a leading recession indicator. Higher inflation in quarter t

predicts lower consumption growth in quarter t + n even n = 6 quarters ahead of time. The lower left
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Figure 2: Impulse responses to 1-percentage point surprises et+1 in consumption growth and inflation.
The responses are measured in percent. Dotted lines are 2 × standard error bounds based on maximum
likelihood.

panel shows that high consumption also forecasts low inflation, but with a shorter lead time. These

cross-predictability patterns will be important for determining longer yields.

From equations (12) and (13) we know that the dynamics of equilibrium interest rates are driven by

forecasts of growth and inflation. Real yield movements are generated by changes in growth forecasts

over the lifetime of the bond, while nominal yield movements are generated by changing nominal

growth forecasts. To understand the conditional dynamics of these forecasts better – as opposed to

the unconditional covariances and thus univariate regression forecasts from Figure 1 – we plot impulse

responses in Figure 2. These responses represent the change in forecasts following a 1-percent shock

et+1. The signs of the own-shock responses are not surprising in light of the unconditional covariances;

they are positive and decay over time. This decay is slower for inflation, where a 1-percent surprise

increases inflation forecasts by 40 basis points even two years down the road. However, the cross-shock

responses reveal some interesting patterns. The middle left plot shows that a 1-percent growth surprise

predicts inflation to be higher by roughly 20 basis points over the next 2-3 years. The top right plot
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Figure 3: The top left panel plots the nominal short rate in the data and the nominal rate implied
by the benchmark model. For comparison, these two lines are also included in the other plots. The
additional line in the other plots is the short rate implied by the model indicated in the title.

shows that a 1-percent inflation surprise lowers growth forecasts over the next year by roughly 10 bp.

While we can read off the impulse responses of real rates directly from the top row of plots in

Figure 2, we need to combine the responses from the top two rows of plots to get the response of

nominal growth or, equivalently, nominal interest rates. This is done in the bottom row of plots in

Figure 2. Here, inflation and growth surprises both lead to higher nominal growth forecasts – even

over longer horizons. From the previous discussion, we know that this effect is entirely due to the

long-lasting effect of both types of shocks on inflation. These findings imply that growth surprises and

inflation surprises move short-maturity real rates in opposite directions, but won’t affect long-maturity

real rates much. In contrast, growth and inflation surprises affect even longer-maturity nominal rates,

because they have long-lasting effects on inflation forecasts. In particular, these shocks move nominal

rates in the same direction.
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An inspection of the surprises et+1 in equation (19) reveals that the historical experience in the

U.S. is characterized by a concentration of large nominal shocks in the 1970s and early 1980s. (We do

not include a plot for space reasons.) Outside this period, inflation shocks occurred rarely and were

relatively small. By contrast, real surprises happened throughout the sample and their average size

did not change much over time. As a consequence, our benchmark model says that yields in the 1970s

and early 1980s were mainly driven by nominal shocks – inflation surprises – that affect nominal and

real rates in opposite directions. Here an inflation surprise lowers real rates because it is bad news

for future consumption growth. In contrast, prior to the 1970s, and again more recently, there were

more real shocks – surprises in consumption growth – that make nominal and real interest rates move

together.

Preference Parameters and Equilibrium Yields

The model’s predictions for yields are entirely determined by the agent’s beliefs about fundamentals

and two preference parameters, the discount factor β and the coefficient of relative risk aversion γ. We

select values for the preference parameters to match the average short and long end of the nominal

yield curve. For our benchmark, those values are β = 1.005 and γ = 59. These numbers indicate that

the agent does not discount the future and is highly risk averse. The nominal short rate implied by

the benchmark model is shown in the top left plot in Figure 3. The benchmark model produces many

of the movements that we observe in the data. For example, higher nominal growth expectations in

the mid 1970s and early 1980s make the nominal rate rise sharply.

Average Nominal Yields

Panel A in Table 1 compares the properties of average nominal yields produced by the model with

those in the data. Interestingly, the model with recursive utility produces, on average, an upward

sloping nominal yield curve – a robust stylized fact in the data. The average difference between the

5-year yield and the 3–month yield in the data is roughly 1 percentage point, or 100 basis points (bp).

This difference is statistically significant; it is measured with a 13 bp standard error. By contrast,

the average level of the nominal yield curve is not measured precisely. The standard errors around

the 5.15 percent average short end and the 6.14 percent average long end of the curve are roughly 40

bp. The intuitive explanation behind the positive slope is that high inflation means bad news about

future consumption. During times of high inflation, nominal bonds have low payoffs. Since inflation
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affects the payoffs of long bonds more than those of short bonds, agents requires a premium, or high

yields, to hold them.

Table 1: Average Yield Curves (In % Per Year)

Panel A: Average Nominal Yield Curve

1 quarter 1 year 2 year 3 year 4 year 5 year

Data 5.15 5.56 5.76 5.93 6.06 6.14
SE (0.43) (0.43) (0.43) (0.42) (0.41) (0.41)

Benchmark Model 5.15 5.33 5.56 5.78 5.97 6.14
Benchmark Model 1-5 5.43 5.56 5.73 5.88 6.02 6.14
Expected (Log) Utility 4.92 4.92 4.91 4.90 4.89 4.88

Large Info Set with same β, γ 5.06 5.14 5.29 5.44 5.60 5.74
Large Info Set 5.15 5.28 5.48 5.71 5.93 6.14

SE Spreads 5-year minus 1 quarter yield 5-year minus 2-year yield
(0.13) (0.07)

Panel B: Average Real Yield Curve

Benchmark Model 0.84 0.64 0.49 0.38 0.30 0.23
Expected (Log) Utility 1.22 1.21 1.21 1.21 1.21 1.21

Large Info Set with same β, γ 0.84 0.63 0.47 0.38 0.31 0.26
Large Info Set 0.70 0.40 0.17 0.04 −0.06 −0.14

Note: Panel A reports annualized means of nominal yields in the 1952:2-2005:4 quarterly data sample and

the various models indicated. ”SE” represent standard errors computed with GMM based on 4 Newey-West

lags. ”SE Spreads” represent standard errors around the average spreads between the indicated yields. For

example, the 0.99 percentage point average spread between the 5-year yield and the 1-quarter yield has a

standard error of 0.13 percentage points.

Panel A in Table 1 also shows that the average nominal yield curve in the data has more curvature

than the curve predicted by the model. A closer look reveals that the curvature in the data comes

mostly from the steep incline from the 3-month maturity to the 1-year maturity. If we leave out

the extreme short end of the curve, the model is better able to replicate its average shape.2 This

idea is explored in the line ”Benchmark Model 1-5 year” where we select parameter values to match

the average 1-year and 5-year yields. The resulting parameter values are β = 1.004 and γ = 43.
2We are grateful to John Campbell for this suggestion.
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Figure 4: Risk premia in the expected utility model with coefficient of relative risk aversion γ (in
percent per year). The plot shows the contribution of the individual terms on the right-hand side of
the expected excess return equation (20) as a function of γ.

A potential explanation for the steep incline in the data are liquidity issues that may depress short

T-bills relative to other bonds. These liquidity issues are not present in our model.

In contrast, the expected utility model generates average nominal yield curves that are downward

sloping. For the case with expected log utility, the negative slope is apparent from line 3 in Panel A.

To see what happens in the more general case with coefficient of relative risk aversion γ, we need to

re-derive the equation for expected excess returns (18). The equation becomes

(20) Et

(
rx

(n)$
t+1

)
= − covt

(
γΔct+1 + πt+1, Et+1

n−1∑
i=1

γΔct+1+i + πt+1+i

)
− 1

2
vart

(
p
(n−1)$
t+1

)
.

Figure 4 plots the individual terms that appear on the right-hand side of this equation as a func-

tion of γ. Most terms have negative signs and thus do not help to generate a positive slope. The

only candidate involves the covariance between inflation and expected future consumption growth,

covt

(
πt+1, Et+1

∑n−1
i=1 γΔct+1+i

)
. This term is positive, because of the minus sign in equation (20)
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Figure 5: The top left panel plots the nominal term spread (5-year minus 3-month) in the data and
the spread implied by the benchmark model. For comparison, these two lines are also included in the
other plots. The additional line in the other plots is the spread implied by the model indicated in the
title.

and the fact that positive inflation surprises forecast lower future consumption growth. With a higher

γ, the importance of this term goes up. However, as we increase γ, the persistence of consumption

growth becomes more and more important, and the real yield curve becomes steeply downward sloping.

Since this effect is quadratic in γ, it even leads to a downward-sloping nominal curve. The intuitive

explanation is that long real bonds have high payoffs precisely when current and future expected con-

sumption growth is low. This makes them attractive assets to hold and so the real yield curve slopes

down. When γ is high, this effect dominates also for nominal bonds.
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Average Real Yields

At the preference parameters we report, the benchmark model also produces a downward sloping

real yield curve. The short real rate is already low, .84 percent, while long real rates are an additional

.60 percentage point lower. It is difficult to assess the plausibility of this property of the model without

a long sample on real yields for the United States. In the United Kingdom, where indexed bonds have

been trading for a long time, the real yield curve seems to be downward sloping. Table B.3 reports

statistics for these bonds. For the early sample (January 1983 – November 1995), these numbers are

taken from Table 1 in Evans (1998). For the period after that (December 1995 – March 2006), we use

data from the Bank of England website. Relatedly, Table 1 in Barr and Campbell (1997) documents

that average excess returns on real bonds in the U.K. are negative.

In the United States, indexed bonds, so-called TIPS, have started trading only recently, in 1997.

During this time period, the TIPS curve has been mostly upward sloping. For example, mutual funds

that hold TIPS – such as the Vanguard Inflation-Protected Securities Fund – have earned substantial

returns, especially during the early years. Based on the raw TIPS data, J. Huston McCulloch has

constructed real yield curves. Table B.4 in Appendix B documents that the average real yield curve

in these data is upward sloping. The average real short rate is .8 percent, while the average 5-year

yield is 2.2 percent.

These statistics have to be interpreted with appropriate caution. First, the short sample for which

we have TIPS data and, more importantly, the low risk of inflation during this short sample make

it difficult to estimate averages. Second, TIPS are indexed to lagged CPI levels, so that additional

assumptions are needed to compute ex ante real rates from these data. Third, there have been only

few issues of TIPS, so that the data are sparse across the maturity spectrum. Finally, TIPS were

highly illiquid at the beginning. The high returns on TIPS during these first years of trading may

reflect liquidity premia instead of signaling positive real slopes.
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Volatility of Real and Nominal Yields

Table 2 reports the volatility of real and nominal yields across the maturity spectrum. We only

report one row for the benchmark recursive utility model and the (log) expected utility model, because

the two models imply the same yield dynamics in equations (12) and (13). Panel A shows that the

benchmark model produces a substantial amount of volatility for the nominal short rate. According

to the estimated state space model (19), changes in expected fundamentals – consumption growth

and inflation – are able to account for 1.8 percent volatility in the short rate. This number is lower

than the 2.9 percent volatility in the data, but the model is two-thirds there. In contrast, the model

predicts a smooth real short rate. This effect is due to the low persistence of consumption growth.

Table 2: Volatility Of Yields (In % Per Year)

Panel A: Nominal Yields

1 quarter 1 year 2 year 3 year 4 year 5 year

Data 2.91 2.92 2.88 2.81 2.78 2.74
SE (0.36) (0.33) (0.32) (0.32) (0.31) (0.30)

Benchmark Model + Exp. (Log) U 1.80 1.64 1.47 1.34 1.22 1.12

Large Info Set 1.81 1.68 1.54 1.43 1.34 1.25

Panel B: Real Yields

Benchmark Model + Exp. (Log) U 0.75 0.55 0.46 0.41 0.38 0.34
Large Info Set 0.83 0.62 0.49 0.42 0.36 0.32

Panel A also reveals that the model predicts much less volatility for long yields relative to short

yields. For example, the model-implied 5-year yield has a volatility of 1.1 percent, while the 5-year

yield in the data has a volatility of 2.7 percent. While the volatility curve in the data is also downward

sloping, the slope of this curve is less pronounced than in the model. This relationship between the

volatility of long yields relative to the volatility of short yields is the excess volatility puzzle. This puzzle

goes back to Shiller (1979) who documents that long yields derived from the expectations hypothesis

are not volatile enough. According to the expectations hypothesis, long yields are conditional expected

values of future short rates. It turns out that the persistence of the short rate is not high enough to

generate enough volatility for long yields. Shiller’s argument applies to our benchmark specification,
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Figure 6: Low frequency components and business cycle components of nominal yields and spreads.
Top row of panels: nominal short rate in the data and the benchmark model together with inflation.
Bottom row of panels: nominal spread in the data and the benchmark model.

because risk premia in equation (17) are constant, and the expectations hypothesis holds. Below, we

will show that our specification with learning produces more volatility for long yields.

Panel B shows that the volatility curve of real bonds also slopes down. Tables B.3 and B.4 in

Appendix B show that this feature is also present in the U.K. indexed yield data and the McCullogh

real yields for the U.S.

Frequency Decompositions and the Monetary Experiment

To better understand the properties of the model, we use a band-pass filter to estimate trend and

cyclical components of yields. The filters isolate business-cycle fluctuations in yields that persist for

periods between 1.5 and 8 years from those that persist longer than 8 years. Figure 6 plots the various

estimated components. The top left panel shows the low frequency components of the model-implied

short rate as well as the observed short rate and inflation. The plots shows that the model captures

the fact that the low frequency component in nominal yields is strongly correlated with inflation. At
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these low frequencies, the main difference between model and data is the experience of the mid 1980s.

When inflation started to come down at the end of the 1970s, nominal yields stayed high well into the

1980s. According to benchmark beliefs – which are estimated over the whole data sample and which

ignore parameter uncertainty – inflation forecasts came down as soon as inflation started to decline.

The basic mechanism behind these changes in inflation expectations is persistence; since inflation is

close to a random walk, inflation forecasts for next quarter are close to this quarter’s value of inflation.

As a consequence, inflation forecasts in the early 1980s fell dramatically, right after inflation went

down. In the model, changes in the nominal short rate during this period are driven by changes in

inflation expectations, and so the short rate falls as well. Below, we will explore how these findings

are affected by learning.

The top right panel in Figure 6 shows the business cycle movements of the same three series:

nominal rate in data and model together with inflation. At this frequency, the short rate is driven by

the business cycle movements in inflation. The model captures this effect, but does not generate the

amplitude of these swings in the data. The bottom right panel in Figure 6 shows the business cycle

movements in data on the spread and consumption growth together with those in the model. The

plot reveals that the three series are strongly correlated at this frequency. In contrast, the bottom left

panel shows that the series do not have clear low-frequency components.

Autocorrelation of Yields

Another feature of the benchmark model is that it does a good job in in matching the high

autocorrelation of short and long yields. The autocorrelation in the nominal short rate is 93.6 percent,

while the model produces 93.4 percent. For the 5-year nominal yield, the autocorrelation in the model

is 94.8 percent and only slightly underpredicts the autocorrelation in the data, which is 96.5 percent.

These discrepancies are well within standard error bounds. As in the data, long yields in the model

are more persistent than short yields. These findings are quite remarkable, because we did not use

any information from nominal yields to fit the dynamics of the state space system.
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Table 3: Autocorrelation of Yields

Panel A: Nominal Yields

1 quarter 1 year 2 year 3 year 4 year 5 year

Data 0.936 0.943 0.953 0.958 0.962 0.965
SE (0.031) (0.030) (0.028) (0.027) (0.027) (0.025)

Benchmark Model + Exp. (Log) U 0.934 0.942 0.945 0.947 0.947 0.948
Large Info Set 0.946 0.954 0.959 0.961 0.962 0.962

Panel B: Real Yields

Benchmark Model + Exp. (Log) U 0.733 0.851 0.922 0.944 0.951 0.954
Large Info Set 0.768 0.846 0.898 0.919 0.929 0.935

IV The Role of Investor Information

In the benchmark exercise of the previous section, the fundamentals – inflation and consumption

growth – play two roles. On the one hand, they determine the pricing kernel: all relevant asset prices

can be written in terms of their conditional moments. On the other hand, they represent investors’

information set: all conditional moments are computed given the past record of consumption growth

and inflation, and nothing else. This is not an innocuous assumption. It is plausible that investors

use other macroeconomic variables in order to forecast consumption growth and inflation. Moreover,

investors typically rely on sources of information that do not come readily packaged as statistics, such

their knowledge of institutional changes or future monetary policy.

In this section, we extend the model to accommodate a larger investor information set. In particu-

lar, we use yields themselves to model agents’ information. We proceed in two steps. First, we estimate

an unrestricted state space system of the type (19) that contains not only consumption growth and

inflation, but also the short rate and the yield spread. At this stage, we ignore the fact that the model

itself places restrictions on the joint dynamics of these variables – the only purpose of the estimation

is to construct agents’ information set. The second step of the exercise is then the same as in the

benchmark case: we compute model-implied yields and compare them to the yields in the data.

The motivation for this particular way of modelling investor information comes from the theoretical

model itself. If the data were in fact generated by a model economy in which yields are equal to

27



investors’ expectations of consumption growth and inflation, our approach would perfectly recover all

investor information relevant for the analysis of the yield curve. To illustrate, suppose that the short

rate is given by

y
(1)$
t = Et [Δct+1 + πt+1|It] + constant,

where It is the investor information set, which contains past consumption growth, inflation, and yields,

but perhaps also other variables that we do not know about.

Suppose further that our unrestricted estimation delivers the true joint distribution of Δct+1, πt+1,

y
(1)$
t and y

(20)$
t . The sequence of model-implied short rates computed in the second step of our exercise,

is then, up to a constant,

Et

[
Δct+1 + πt+1|

(
Δcτ , πτ , y

(1)$
τ , y(20)$

τ

)t

τ=1

]
.

The law of iterated expectations implies that this sequence should exactly recover the data y
$(1)
t . A

similar argument holds for the yield spread. The series of model-implied yield changes would thus be

identical to yield changes in the data. In other words, if the benchmark model replicates observed

yield changes for some information structure under rational expectations, then it will generate observed

yield changes also under the particular information structure we consider here.

The joint model of fundamentals and yields takes the same general form as the system (19), except

that it allows for four state variables and four observables, which implies that 42 parameters must

be estimated. Table A.2 in Appendix contains these parameter estimates. Figure 7 compares the

autocovariance functions of the four observables in the data and for the estimated model. A first order

state space structure appears to do a reasonable job in capturing the joint dynamics of fundamentals

and yields. According to these estimated dynamics, low short rates and high spreads predict lower

consumption growth. Moreover, high short rates and low spreads predict high inflation rates. To key

question for our model is whether these real and nominal growth predictions arise from additional

information contained in yields.

When we compute the model-implied short rate and term spread with a “Large Info Set”, they

look very much like those from the benchmark. The top right hand panel of Figures 3 and 5 plots

these series, together with the data and the benchmark results. Summary statistics on model-implied
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Figure 7: Covariance functions from the state space system based on a “Large Info Set” – consumption
growth, inflation, the short rate, and the spread. Dotted lines indicate 2 × standard errors bounds
around the covariance function from the data computed with GMM.

yields from this “Large Info Set” model are also included in Tables 1 and 2. Interestingly, average

nominal yields in Table 1 based on a “Large Info Set” are somewhat lower than in the benchmark,

when we evaluate the two models at the same preference parameter values. The intuitive explanation

is that more information lowers risk in the model. Line 5 of Table 1 re-phrases this finding: if we want

to match the average slope of the nominal yield curve with a “Large Info Set”, we need to rely on

more risk aversion, γ = 85 instead of the benchmark value of γ = 59, and a similar discount factor

β = 1.005. Nevertheless, the results are overall very similar to the benchmark case. We conclude

that not much is lost by restricting the investor information set to contain only past inflation and

consumption growth.
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The key point from this exercise is that the short rate and the yield spread do not contain much

more information about future consumption growth and inflation than is already contained current

and past consumption growth and inflation. Another way to see this is to run regressions of future

real and nominal growth rates on current values of the four variables Δct, πt, y
(1)$
t and y

(20)$
t . In the

one-step ahead real growth regression, the coefficient on consumption growth is .26 with a t-statistic of

4.2 and the coefficient on inflation is −.11 with a t-statistic of −1.85. (These t-statistics are based on

Newey-West standard errors.) The coefficients on yields are not significant and also economically tiny,

around 0.0015. The R2 in this regression is 16%. In 4-step ahead and 8-step ahead growth regressions,

inflation becomes more important, but yields remain insignificant. In the one-step ahead nominal

growth regression, we find the same pattern. The coefficient on consumption is .21 with a t-stat of

2.5, the coefficient of inflation is .58 with a t-stat of 5.1, and yields do not enter significantly. The R2

of this regression is 31%. In the 4-step ahead and 8-step ahead nominal growth regressions, we get the

same patterns. We can conclude that the bivariate autocovariances between, say, current consumption

growth and lagged spreads in Figure 7 do not survive in multivariate regressions.

Our results may appear surprising in light of the observed volatility in yields. On the one hand,

one might have expected that it is always easy to back out a latent factor from observed yields that

generates a lot of volatility in model-implied yields as well.3 On the other hand, it would seem easy

to change the information structure of the model in order to have information released earlier, again

making conditional expectations, and hence yields, more volatile. However, an important feature of

the exercise here is that we not only compute model-implied yields from an Euler equation, but also

check the correlation of model implied and observed yields.

To see the difference between our exercise and other ways of dealing with information unknown to

the modeler, consider the following stylized example. Assume that the true data generating process

for consumption growth is constant, while inflation and the short rate are both iid with unit variance,

but independent of each other. If we had performed our benchmark exercise on these data, we would

have found an iid inflation process. With constant consumption growth and iid inflation, computing

the short rate from the Euler equation would have delivered a constant model-implied nominal short
3Indeed, the quarterly variation in bond yields is well explained using a statistical factor model with only two latent

factors, or principal components. Intuitively, the lion share of the movements in nominal yields are up/down movements
across the curve. The first principal component of yields captures these so-called “level” movements which explain
98.22% of the total variation in yields. An additional 1.58% of the movements in yields is captured by the second
principal component, which represents movements in the slope of the curve. Together, “level” and “slope” explain
almost all, 99.80%, of the variation in yields.
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rate, which is much less volatile than the observed short rate.

Now consider two alternative exercises. Exercise A assumes that investors’ expected inflation is

driven by a perceived “inflation target”, which is backed out from the short rate (for simplicity, suppose

it is set equal to the short rate). Exercise B assumes that investors’ expected inflation is driven by

a perceived inflation target that is equal to next period’s realized inflation. This exercise may be

motivated by the fact that investors read the newspaper and know more than past published numbers

at the time they trade bonds. Suppose further that both exercises maintain the assumption that

the Euler equation holds: model-implied short rates are computed as investors’ subjective expected

inflation. Both exercises then generate model-implied short rates that – when viewed in isolation –

have exactly the same distribution as observed short rates.

In spite of their success in generating volatility, both exercises miss key aspects of the joint distri-

bution of inflation and the short rate. In Exercise A, model-implied expected inflation is independent

of actual inflation one period ahead, which is inconsistent with rational expectations. This happens

because the inflation target is backed out from the short rate, which here moves in the data for reasons

that have nothing to do with inflation or inflation expectations. In Exercise B, the model implied short

rate is perfectly correlated with inflation one period ahead, while these variables are independent in

the data.

The exercise of this section avoids the problems of either Exercise A or B. If the first step estimation

had been done using the example data, we would have found independence of inflation and the short

rate. As a result, the model-implied short rate based on the estimated information set would be

exactly the same as in the benchmark case. The model would thus again imply constant short rates.

We would thus have correctly inferred that yields do not contain information about future inflation

and consumption growth, than is contained in the fundamentals themselves. As a result, any model

economy where the Euler equation holds and beliefs are formed via rational expectations produces

model-implied yields that are less volatile than observed yields.
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V Learning

In the benchmark exercise of Section III, investor beliefs about fundamentals are assumed to be

conditional probabilities of a process that was estimated using all data through 2005. This approach

has three a priori unattractive properties. First, it ignores the fact that investors in, say, 1980 only

had access to data up to 1980. Second, it assumes that agents believed in the same stationary model

throughout the postwar period. This is problematic given that the 1970s are often viewed as a period

of structural change. Indeed, the decade witnessed the first ever peacetime inflation in the US, the

breakdown of leading macroeconomic models, as well as significant innovation in bond markets. Third,

the benchmark beliefs were based on point estimates of the forcing process, ignoring the fact that the

parameters of the process itself are not estimated with perfect precision, and investors know this.

In this section, we construct a sequence of investor beliefs that do not suffer from the above

drawbacks. We maintain the hypothesis that, at every date t, investors form beliefs based on a state

space system of the form (19). However, we reestimate the system for every date t using only data

up to date t. To accommodate investor concern with structural change, we maximize a modified

likelihood function that puts more weight on more recent observations. To model investor concern

with parameter uncertainty, we combine the state space dynamics with a Bayesian learning scheme

about mean fundamentals.

A. Beliefs

Formally, beliefs for date t are constructed in three steps. We first remove the mean from the funda-

mentals zt = (Δct, πt)
� . Let υ ∈ (0, 1) denote a “forget factor” that defines a sequence of geometrically

declining sample weights. The weighted sample mean for date t is

(21) μ̂z (t) =

(
t−1∑
i=0

υi

)−1 t−1∑
i=0

υizt−i.

The sequence of estimated means for consumption growth and inflation is plotted in Figure 8. It

essentially picks up the low frequency components in fundamentals.
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Figure 8: Sequentially estimated means of consumption growth and inflation (in percent per year).
This estimation uses υ = .99.

Adaptive Learning

In a second step, we estimate the state space system (19) using data up to date t by minimizing

the criterion

(22) −1
2

t−1∑
i=0

υi
[
log detΩ + (zt−i − μ̂z (t) − xt−1−i)

� Ω−1 (zt−i − μ̂z (t) − xt−1−i)
]

starting at x0 = 0. Maximum likelihood estimation amounts to the special case υ = 1; it minimizes

the equally weighted sum of squared in-sample forecast errors. In contrast, the criterion (22) penalizes

recent forecast errors more heavily than those in the distant past. Ljung and Soderstrom (1987) and

Sargent (1993) advocate this approach to adaptive learning in situations where the dynamics of a

process may change over time.

The forget factor υ determines how quickly past data are downweighted. For most of our results,

we use υ = .99, which implies that the data point from 17 years ago receives about one half the

weight of the most recent data point. To allow an initial sample for the estimation, the first belief

is constructed for 1965:1. The analysis of yields in this section will thus be restricted to the period

since 1965. As in the benchmark case, the estimation step not only delivers estimates for the matrices

φx, K and Ω, but also estimates for the sequence of states (xτ )
t
τ=1, starting from x0 = 0. In particular,
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Figure 9: Impulse responses to 1-percent consumption growth and inflation surprises, in % per year, for
real consumption growth, inflation, and nominal consumption growth. Time is measured in quarters
along the horizontal axis.

we obtain an estimate of the current state xt that can be taken as the basis for forecasting future

fundamentals under the system estimated with data up to date t.

Figure 9 illustrates how the dynamics of consumption growth and inflation has changed over time.

In each panel, we plot estimated impulse responses to consumption growth and inflation surprises,

given data up to the first quarter of 1968, 1980 and 2005. In a rough sense, the three selected years

represent “extreme points” in the evolution of the dynamics: impulse responses for years between

1968 and 1980 would for the most part lie in between the lines for these two years, and similarly for

the period 1980-2005. The response of real growth to a growth surprise has not changed much over

the years. In contrast, an inflation surprise led to a much larger revision of inflation forecasts – at all

horizons – in 1980 than in 1968; the effect has diminished again since then.

Growth surprises also had a larger (positive) effect on inflation forecasts in 1980 than either before

or after. While this is again true for all forecast horizons, the effect of inflation surprises on growth

forecasts changed differently by horizon. For short horizons, it has decreased over time; only for longer
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horizons is it largest in 1980. The bottom line is that both the persistence of inflation and its role as

an indicator of bad times became temporarily stronger during the great inflation of the 1970s.

Performing the estimation step for every date t delivers not only sequences of parameter estimates,

but also estimates of the current state xt. Computing conditional distributions given xt date by date

produces a sequence of investor beliefs. The subjective belief at date t determines investors’ evaluation

of future utility and asset payoffs at date t. We thus use this belief below to calculate expectations

of the pricing kernel, that is, yields, for date t. In contrast to the benchmark approach, the exercise

of this section does not impose any direct restriction on beliefs across different dates; for example, it

does not requires that all beliefs are conditionals of the same probability over sequences of data. The

updating of beliefs is thus implicit in the sequential estimation.

The model also does not impose a direct link between investor beliefs and some “true data gener-

ating process”, as the benchmark approach does by imposing rational expectations. The belief at date

t captures investors’ subjective distribution over fundamentals at date t. It is constrained only by past

observations (via the estimation step), and not by our (the modelers’) knowledge of what happened

later. At the same time, our approach does impose structural knowledge on the part of investors:

their theory of asset prices is based on the representative agent preferences that we use.

Parameter Uncertainty

The third step in our construction of beliefs introduces parameter uncertainty. Here we focus

exclusively on uncertainty about the estimated means. Our goal is to capture the intuition that, in

times of structural change, it becomes more difficult to distinguish permanent and transitory changes

in the economy. We thus assume that, as of date t, the investor views both the true mean μz and the

current persistent (but transitory) component xt as random. The distribution of zt can be represented

by a system with four state variables:

zτ+1 = μz + xτ + eτ+1,⎛⎜⎝ μz

xτ+1

⎞⎟⎠ =

⎛⎜⎝ I2 0

0 φx

⎞⎟⎠
⎛⎜⎝ μz

xτ

⎞⎟⎠+

⎛⎜⎝ 0

φxKeτ+1

⎞⎟⎠ .(23)

The matrices φx, K and Ω are assumed to be known and are taken from the date t estimation step.

In order to describe investors’ perception of risk, it is helpful to rewrite (23) so that investors’
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conditional expectations – rather than the unobservables μz and x – are the state variables. Let μ̂z (τ)

and x̂τ denote investors’ expectations of μz and xτ , respectively, given their initial knowledge at date

t as well as data up to date τ . We can rewrite (23) as

zτ+1 = μ̂z (τ) + x̂τ + êτ+1,⎛⎜⎝ μ̂z (τ + 1)

x̂τ+1

⎞⎟⎠ =

⎛⎜⎝ I2 0

0 φx

⎞⎟⎠
⎛⎜⎝ μ̂z (τ)

x̂τ

⎞⎟⎠+

⎛⎜⎝ Kμ (τ + 1)

φxKz (τ + 1)

⎞⎟⎠ êτ+1,(24)

where êτ+1 is investors’ one step ahead forecast error of the data zτ+1. The matrices Kμ (τ + 1) and

Kz (τ + 1) can be derived by applying Bayes’ Rule. They vary over time, because the learning process

is nonstationary. Early on, the investor expects to adjust his estimate of, say, mean inflation, a lot in

response to an inflation shock. As time goes by, the estimate of the mean converges, and the matrix

Kμ converges to zero, while the matrix Kz reverts to the matrix K from (19).

To complete the description of investors’ belief, it remains to specify the initial distribution of μz

and xt at date t. We assume that these variables are jointly normally distributed, with the mean of

μz given by the point estimate (21) and the mean of xt given by its point estimate from the date t

estimation step. To specify the variance, we first compute the weighted sum of squares

(25) Σz (t) =

(
t−1∑
i=0

υi

)−1 t−1∑
i=0

υi (zt−i − μ̂z (t))� (zt−i − μ̂z (t)) .

This provides a measure of overall uncertainty that the investor has recently experienced. We then

compute the variance of the estimates (μ̂z (t) , x̂t) under the assumption that the system (24) was

initialized at some date t − n, at a variance of Σz (t) for μz (t − n) and a variance of zero for xt−n.

The idea here is to have investors’ relative date t uncertainty about μz and x depend not only on

the total variance in recent history, captured by Σz (t) , but also by the nature of recent dynamics,

captured by the estimation step. For example, it should have been easier to disentangle temporary

and permanent movements in inflation from the data if inflation has been less persistent recently. The

above procedure captures such effects. Indeed, the main source of variation in investor beliefs for

this exercise comes from the way the estimated dynamics of Figure 9 change the probability that an

inflation surprise signals a permanent change in inflation. The patterns for yields we report below

remain essentially intact if we initialize beliefs at the same variance Σz for all periods t. Similarly, the
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results are not particularly sensitive to the choice of n. For the results below, we use n = 25 years.

The presence of parameter uncertainty adds permanent components to the impulse responses of

growth and inflation surprises. This is because a surprise ê changes the estimate of the unconditional

mean, which is relevant for forecasting at any horizon. The direction of change is given by the

coefficients in the Kμ matrices. In particular, the matrix Kμ (t) will determine investors’ subjective

covariances between forecasts of growth and inflation in period t + 1 – the key determinants of risk

premia in the model. For the typical date t, the coefficients in Kμ (t) reflect similar correlation patterns

as the impulse responses in Figure 9. Growth surprises increase the estimates of both mean growth

and mean inflation. Inflation surprises affect mean inflation positively, and mean growth negatively.

B. Yields

To compute yields, we evaluate equation (11), where all conditional means and variances for date t

are evaluated under the date t subjective distribution. The results are contained in Table 4 and the

bottom panels of Figures 3 and 5, which show realized yields predicted by the model. We report two

types of results. The results in Table 4 and the bottom left panels of Figures 3 and 5 allow only for

adaptive learning, without parameter uncertainty. For this case, we select the preference parameters

so that the model matches the mean short rate and term spread, as for the previous exercises. Model-

implied yields from an example with parameter uncertainty are included in the bottom right panels

of Figures 3 and 5.

Implementing the case of parameter uncertainty for patient investors (β ≥ 1) requires us to choose

a third parameter, the planning horizon T . To see why, consider how continuation utility (4) enters

the pricing kernel (6). Utility next quarter depends on next quarter’s forecasts of future consumption

growth, up to the planning horizon. As discussed above, the case of parameter uncertainty adds a

permanent component to the impulse response of, say, an inflation surprise: an inflation surprise next

quarter will lower expected consumption growth for all quarters up to the planning horizon. The

“utility surprise” vt+1 − Etvt+1 therefore depends on the length of the planning horizon. Intuitively,

an investor who lives longer and cares more strongly about the future, is more affected by the outcomes

of future learning.4

4This effect is not present without parameter uncertainty, because the random component of future consumption
growth forecasts then converges to zero with the forecast horizon. Therefore, as long as the planning horizon is long
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Table 4: Results With Adaptive Learning

Panel A: Nominal Yield Curve

1 quarter 1 year 2 year 3 year 4 year 5 year
Data starting 1965:1

Mean 5.95 6.39 6.63 6.80 6.94 7.02
Volatility 2.84 2.80 2.73 2.64 2.58 2.52

Adaptive Learning Model
Mean 5.95 6.14 6.39 6.61 6.82 7.02

Volatility 2.10 2.24 2.46 2.67 2.85 3.01

Panel B: Real Yield Curve

Adaptive Learning Model
Mean 1.27 1.16 1.05 0.97 0.89 0.82

Volatility 0.72 0.60 0.60 0.65 0.71 0.77

Note: The implications of the learning models can only be studied from 1965:1 onwards, because we need

some initial observations to start the algorithms.

It follows that, for patient investors with a long planning horizon, the effect of risk on utility

can be as large (or larger) as the effect of mean consumption growth and inflation. Since parameter

uncertainty becomes the main driver of risk premia in this case, the planning horizon and the risk

aversion coefficient have similar effects on the model results. For the results below, we use T =

25000 years and γ = 4, together with β = 1. At these parameter values, the model has interesting

implications for the behavior of the short rate and spread during the monetary experiment.

Adaptive Learning

The short rate in the economy with adaptive learning behaves similarly to that in the benchmark

model as long as there is little turbulence – the 1960s and early 1970s, and the 1990s. However, the

model generates significantly higher short rates during the monetary experiment and also somewhat

higher rates during the mid 1980s. The new movements are brought about by changes in the dynamics.

In particular, the investor’s subjective covariance between inflation and future expected consumption

increased a lot around 1980. This development was not just due to inflation volatility: the correlation

between inflation and future consumption also increased. As the stagflation experience of the 1970s

made its way into the beliefs of adaptive learners, our basic “inflation as bad news” mechanism was

thus reinforced.

enough, it does not matter for the utility surprise even if β > 1.
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Since inflation became such an important carrier of bad news, the 1980s not only increased the

inflation premium on short bonds in the adaptive learning economy, but also introduced large spikes

in the term spread. In the data, the high short rates of 1980 were accompanied by historically low

term spreads. In contrast, the adaptive learning model generates a large term spread, for the same

reason as it generates high short rates. Apart from this outlier, the model economy does exhibit a low

frequency trend in the spread, with higher spreads after the 1980s than before.

Model implied yields from the adaptive learning economy are remarkably similar to the benchmark

model immediately after the monetary experiment ended. The reason is that inflation forecasts from

both models drop immediately as inflation itself comes down. This result is quite robust to alternative

specifications of the learning scheme, obtained for example by changing the forget rate or switching

from geometric downweighting to a rolling window approach. We conclude that learning does not

induce inertia in inflation forecasts that can explained why interest rates remained high in the early

1980s.

Parameter Uncertainty

The results with parameter uncertainty also look very different in the early 1980s compared to

other years. The short rate tracks the benchmark until the late 1970s. However, it then peaks at a

higher rate in 1981 and it remains high thereafter. Parameter uncertainty thus generates the sluggish

adjustment of yields at the end of the monetary experiment. The economy with parameter uncertainty

also exhibits a transition of the spread from negative values in the late 1970s to historically high values

throughout the first half of the 1980s. A similar transition took place in the data. Towards the end

of the sample yields and spreads come down again, especially for the latter, the decline is more

pronounced than in the data.5

Importantly, this is not due to sluggish inflation expectations: by design, inflation forecasts are the

same in the adaptive learning and the parameter uncertainty exercises. Instead, the role of inflation as

bad news is here enhanced by the difficulty investors face in disentangling permanent from transitory

moves in inflation. The increase in parameter uncertainty through the 1970s implies that, in the

early 1980s, there is a greater chance that an inflation surprise signals a permanent shift in inflation
5The parameter uncertainty model also generates low spreads at the beginning of the sample. As for the adaptive

learning model, the behavior in this period is driven in part by the fact that the samples used in the sequential estimation
are as yet rather short.
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that would generate bad news. Since the (subjective) means of inflation and consumption growth are

also negatively correlated, the inflation surprise would generate permanent bad news. For a patient

investor, we obtain large movements in risk premia.

VI Related Literature

The literature on the term structure of interest rates is vast. In addition to a substantial body of

work that documents the behavior of short and long interest rates and summarizes it using statistical

and arbitrage-free models, there are literatures on consumption based asset pricing models, as well as

models of monetary policy and the business cycle that have implications for yields. There is also a

growing set of papers that documents the importance of structural change in the behavior of interest

rates and the macroeconomy. We discuss these groups of papers in turn.

Statistical and Arbitrage-Free Models

Average nominal yields are increasing and concave in maturity. Excess returns on nominal bonds

are positive on average and also increasing in maturity. They are also predictable using interest

rate information (Fama and Bliss 1987, Campbell and Shiller 1991). The latter fact contradicts the

expectations hypothesis, which says that long rates are simply averages of expected future short rates,

up to a constant. The expectations hypothesis also leads to an “excess volatility puzzle” for long

bond prices, which is similar to the excess volatility of stock prices: under rational expectations, one

cannot reconcile the high volatility of nominal rates with observed persistence in short rates (Shiller

1979). A related literature documents “excess sensitivity” of long rates to particular shocks, such as

macroeconomic announcements (Gurkaynak, Sack, and Swanson 2005).

Another stylized fact is that nominal yields of all maturities are highly correlated. Litterman

and Scheinkman (1991) have shown that a few principal components explain much of the variation

in yields. For example, in our quarterly postwar panel data, 99.8% of the variation is explained by

the first and second principal components. Here the elephant in the room is the first component,

which alone captures 98.2% of this variation and stands for the “level” of the yield curve. The second

component represents changes the “slope” of the curve, while the third principal component represents

“curvature” changes.
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This fact has motivated a large literature on arbitrage-free models of the term structure. The

goal here is to summarize the dynamics of the entire yield curve using a few unobservable factors.

Recent work in this area explores the statistical relationship between term structure factors and

macroeconomic variables. For example, the arbitrage-free model by Ang, Piazzesi, and Wei (2006)

captures the role of the term spread as a leading indicator documented by the predictive regressions

surveyed in Stock and Watson (1999). In this work, the only cross-equation restrictions on the joint

distribution of macro variables and yields come from the absence of arbitrage.

In the present paper, our focus is on cross-equation restrictions induced by Euler equations, which

directly link yields to conditional moments of macroeconomic variables. In particular, we focus on

properties of the short rate and a single yield spread and use these to link the level and slope of

the yield curve to inflation and the business cycle. The rational expectations exercises in Sections

III and IV also impose the expectations hypothesis through our assumptions on preferences and the

distribution of shocks. While this implies that the model economies do not exhibit predictability and

excess volatility of long yields, they are useful for understanding the macro underpinnings of average

yields as well as the volatility of the level factor, which accounts in turn for the lion’s share of yield

volatility. The learning exercises in Section V do generate predictability in yields because of time

variation in perceived risk.

Consumption-based asset pricing models

The representative agent asset pricing approach we follow in this paper takes the distribution

of consumption growth and inflation as exogenous and then derives yields from Euler equations.

Early applications assumed power utility. Campbell (1986) shows analytically that positive serial

correlation in consumption growth and inflation leads to downward sloping yield curves. In particular,

term spreads on long indexed bonds are negative because such bonds provide insurance against times

of low expected consumption growth. Backus, Gregory, and Zin (1989) document a “bond premium

puzzle”: average returns of long bonds in excess of the short rate are negative and small for coefficients

of relative risk aversion below 10. Boudoukh (1993) considers a model with power utility where the

joint distribution of consumption growth and inflation is driven by a heteroskedastic VAR. Again, term

premia are small and negative. The latter two papers also show that heteroskedasticity in consumption

growth and inflation, respectively, is not strong enough to generate as much predictability in excess

bond returns as is present in the data. Chapman (1997) documents that ex-post real rates and
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consumption growth are highly correlated, at least outside the monetary policy experiment.

Our results show that the standard result of negative nominal term spreads is overturned with

recursive utility if inflation brings bad news. The form of recursive utility preferences proposed by

Epstein and Zin (1989) and Weil (1989) has become a common tool for describing investors’ attitudes

towards risk and intertemporal substitution. Campbell (1999) provides a textbook exposition. An

attractive feature of these preferences is that they produce plausible quantity implications in business

cycle models even for high values of the coefficient of relative risk aversion, as demonstrated in Tallarini

(2000). Bansal and Yaron (2004) show that a model with recursive utility can also generate a high

equity premium and a low riskfree rate if consumption growth contains a small, but highly persistent,

component. They argue that, even though empirical autocovariances of consumption growth do not

reveal such a component, it is hard to refute its presence given the large transitory movements in

consumption growth.

Our benchmark rational expectations exercise postulates a consumption process parametrized by

our maximum likelihood point estimates. As a result, the autocovariances of consumption growth

in our model are close to their empirical counterparts. The effects we derive are mostly due to

the forecastability of consumption growth by inflation, again suggested by our point estimates. Our

learning exercise with parameter uncertainty plays off the fact that permanent and persistent transitory

components can be hard to distinguish.

The literature has also considered utility specifications in which current marginal utility depends

on a mean-reverting state variable. In habit formation models as well as in Abel’s (1990) model of

“catching up with the Joneses ”, marginal utility not only depends on current consumption but also

on consumption growth which is mean reverting. The presence of a mean-reverting state variable in

marginal utility tends to generate an upward sloping yield curve: it implies that bond prices (expected

changes in marginal utility) are negatively correlated with marginal utility. Since bonds thus pay off

little precisely in times of need, they command a premium. Quantitative analysis of models of habit

formation and catching up with the Joneses showed that short real interest rates become very volatile

when the models are calibrated to match the equity premium.

Campbell and Cochrane (1995) introduce a model in which marginal utility is driven by a weighted

average of past innovations to aggregate consumption, where the weight on each new innovation is
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positively related to the level of the marginal utility. With this feature, low current marginal utility

need not imply extremely high bond prices, since the anticipation of less volatile innovations in the

future discourages precautionary savings and lowers bond prices. In their quantitative application,

Campbell and Cochrane focus on equity and short bonds, and pick the weight function so that the

real riskless rate is constant and the term structure is flat. Wachter (2006) instead picks the weight

function to match features of the short rate dynamics. In a model driven by iid consumption and an

estimated inflation process, she shows that this approach accounts for several aspects of yield behavior,

while retaining the results for equity from the Campbell-Cochrane model.6

Monetary and business cycle models

The consumption based asset pricing approach we follow in this paper assumes a stochastic trend

in consumption. In contrast, studies in the business cycle literature often detrend real variables,

including consumption, in a first step and then compare detrended data to model equilibria in which

the level of consumption is stationary. This distinction is important for the analysis of interest rates,

since the pricing kernel (6), derived from the Euler equation, behaves very differently if consumption

is stationary in levels (Labadie 1994).7 Alvarez and Jermann (2005) have shown that a permanent

component must account for a large fraction of the variability of state prices if there are assets that

have large premia over long term bonds, as is the case in the data. A stochastic trend in consumption

directly induces a large permanent component in real state prices.

Recently various authors have examined the term-structure implications of New Keynesian models.

The “macro side” of these models restricts the joint distribution of output, inflation and the short

nominal interest rate through an Euler equation – typically allowing for an effect of past output on

current marginal utility as well as a taste shock – , a Phillips curve and a policy reaction function

for the central bank. Longer yields are then linked to the short rate via an exogenous pricing kernel

(Rudebusch and Wu 2005, Beechey 2005) or directly through the pricing kernel implied by the Euler

equation (Bekaert, Cho and Moreno 2005, Hordahl, Tristani, and Vestin 2005, Ravenna and Seppala

2005). Our model differs from these studies in that it does not put theoretical restrictions on the
6The New Keynesian model of Bekaert, Cho and Moreno (2005) assumes “catching up with the Joneses” together

with a taste shock to marginal utility. This is another way to reconcile the behavior of yields with a habit formation
model.

7In particular, if consumption reverts to its mean, “good” shocks that increase consumption lead to lower expected
consumption growth and hence lower real interest rates and higher real bond prices. This is exactly the opposite of
the effect discussed in Section II, where “good” shocks that increase consumption growth leads to higher expected
consumption growth and hence higher real interest rates and lower bond prices.
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distribution of the macro variables and does not allow for taste shocks.

Our model assumes frictionless goods and asset markets. In particular, there are no frictions

associated with the exchange of goods for assets, which can help generate an upward sloping yield

curve. For example, Bansal and Coleman (1996) derive a liquidity premium on long bonds in a model

where short bonds are easier to use for transactions purposes. Alvarez, Atkeson, and Kehoe (1999)

show that money injections contribute to an upward sloping real yield curve in a limited participation

model of money. This is because money injections generate mean reversion in the level of consumption

of bond market participants. Seppala (2004) studies the real yield curve in a model with heterogeneous

agents and limited commitment. He shows that incomplete risk sharing helps to avoid a bond premium

puzzle.

Learning

Our learning exercise builds on a growing literature that employs adaptive learning algorithms

to describe agent beliefs. This literature is surveyed by Evans and Honkapohja (2001). Empirical

applications to the joint dynamics of inflation and real variables include Sargent (1999) and Marcet

and Nicolini (2003). Carceles-Poveda and Giannitsarou (2006) consider a Lucas asset pricing model

where agents learn adaptively about aspects of the price function. In these studies, learning often

concerns structural parameters that affect the determination of endogenous variables. In our setup,

investors learn only about the (reduced form) dynamics of exogenous fundamentals; they have full

structural knowledge of the price function. Another feature of many adaptive learning applications

is that standard errors on the reestimated parameters are not taken into account by agents. In our

model, standard errors are used to construct subjective variances around the parameters and investors’

anticipation of future learning is an important determinant of risk premia.

Learning has been applied to the analysis of the term structure by Fuhrer (1996), Kozicki and

Tinsley (2001), and Cogley (2005). In these papers, the expectations hypothesis holds under investors’

subjective belief, as it does in our model. Fuhrer’s work is closest to ours in that he also considers

the relationship between macrovariables and yields, using an adaptive learning scheme. However, the

link between yields and macroeconomic variables in his model is given by a policy reaction function

with changing coefficients, rather than by an Euler equation as in our setting. The paper shows that

changing policy coefficients induce expectations about short rates that generate inertia in long rates
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in the 1980s. In other words, inertia is due to changing conditional means. This is different from our

results, where interest rates are tied to expected consumption growth and inflation. This is why, in

the context of our model, changes in conditional variances are more important.

Kozicki and Tinsley (2001) and Cogley (2005) use different learning models to show that the

expectations hypothesis may seem to fail in the data even if it holds under investors’s subjective

belief. Kozicki and Tinsley consider an adaptive learning scheme, while Cogley derives beliefs from a

Bayesian VAR with time-varying parameters for yields, imposing the expectations hypothesis. Regime-

switching models of interest rates deal with some of the same stylized facts on structural change as

learning models. (For a survey, see Singleton 2006.) A key property is that they allow for time

variation in conditional variances. Since this is helpful to capture the joint movements of inflation and

the short rate, regime switching is a prominent feature of statistical models that construct ex ante

real rates from inflation and nominal yield data. Veronesi and Yared (2001) consider an equilibrium

model of the term structure with regime switching and power utility.

VII Conclusion

We see at least two interesting tasks for future research. The first is to understand better the sources of

yield volatility at business cycle frequencies. While some of the models presented in this paper exhibit

substantial volatility, and do quite well on low frequency movements in interest rate levels, none of them

exhibits as much volatility at business cycle frequencies as we find in the data, especially for the yield

spread. One natural extension of our benchmark rational expectations model is to capture nonlinear

features of the inflation process through regime switching or other devices that allow conditional

heteroskedasticity. In addition to generating more volatility, this might have interesting implications

for the predictability of excess long bond returns. To evaluate rational expectations models, the

analysis in Section 4 – where we capture investors’ information using asset prices in a first step before

computing model implied yields – provides a way to evaluate many different information structures at

the same time.

A second task is to develop further models in which changes in uncertainty have first order effects

on interest rates. We have provided one example of such a model and have shown that it holds some

promise for understanding why interest rates were high in the 1980s, although inflation expectations
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were low. However, more work is needed to reconcile the learning process with interest rates during

other periods, and to integrate it more tightly with survey expectations. To this end, the tractable

approach to learning that we consider in Section 5 – combining adaptive learning and parameter

uncertainty – is less involved than a full Bayesian learning setup, but can nevertheless capture both

agents’ understanding of the future dynamics of fundamentals and agents’ confidence in how well they

understand this dynamics.
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Appendix

A Estimation of the State Space System

Given the normality assumption on the disturbance vector et+1, the log likelihood function of the

vector zt+1 is easily derived as the sum of log Gaussian conditional densities. In setting up these

conditional densities, we compute the state vector xt recursively as xt = φxxt−1 + φxK (zt − xt−1)

starting with x0 = 0. The resulting parameter estimates are reported in Tables A1 and A2. The

data are in percent and sampled at a quarterly frequency, 1952:2-2005:4. For example, this means that

μc = 0.823 represents a mean annualized consumption growth rate of 0.823 × 4 = 3.292 percent. We

de-mean the series for the estimation, which is why we do not report standard errors for the means.

The dotted lines in Figure 1 are 2 × standard error bounds computed using GMM. We use

these bounds to answer the question whether the point estimate of the covariance function from

the model is within standard error bounds computed from the data, without imposing the structure

from the model. For each element of the covariance function, we estimate a separate GMM objec-

tive function. For example, we use moments of the type h (t, θ) = (Δct − μc) (Δct−1 − μc) − θ or

h (t, θ′) = (Δct − μc) (πt−1 − μπ) − θ′. We compute the GMM weighting matrix with 4 Newey-West

lags.

Table A.1: Maximum Likelihood For Benchmark

μz chol(Ω) φx φxK

Δc 0.823 0.432 0 0.544 −0.099 0.242 −0.117
– (0.021) – (0.170) (0.054) (0.074) (0.097)

π 0.927 −0.092 0.293 0.280 1.019 0.089 0.526
– (0.021) (0.014) (0.118) (0.037) (0.050) (0.067)

Note: This table contains the parameter estimates for the ”Benchmark” system

zt+1 = μz + xt + et+1

xt+1 = φxxt + φxKet+1

where zt+1 = (Δct+1, πt+1)
� . The system starts at x0 = 0. ”chol(Ω)” is the Cholesky decomposition

of var(et+1) = Ω. Brackets indicate maximum-likelihood asymptotic standard errors computed from the

Hessian.
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Table A.2: Maximum Likelihood For Large Info Set Model

μz chol(Ω)

Δc 0.823 0.422 0 0 0
– (0.021) – – –

π 0.927 −0.082 0.288 0 0
– (0.020) (0.014) – –

y(1)$ 1.287 0.031 0.045 0.234 0
– (0.016) (0.016) (0.011) –

y(20)$ − y(1)$ 0.248 −0.013 −0.017 −0.112 0.119
– (0.011) (0.011) (0.010) (0.006)

φx φxK

Δc 0.604 0.256 0.139 −0.096 0.243 0.070 0.119 −0.088
(0.156) (0.109) (0.096) (0.073) (0.083) (0.052) (0.041) (0.029)

π −0.057 1.042 0.126 −0.036 −0.075 0.440 0.098 −0.098
(0.070) (0.048) (0.043) (0.028) (0.107) (0.076) (0.056) (0.039)

y(1)$ −0.008 −0.027 0.906 0.023 −0.239 0.142 0.7701 0.043
(0.047) (0.032) (0.030) (0.019) (0.192) (0.113) (0.093) (0.064)

y(20)$ − y(1)$ 0.151 −0.030 −0.022 0.883 0.090 −0.195 0.286 0.548
(0.115) (0.081) (0.074) (0.049) (0.246) (0.165) (0.137) (0.101)

Note: This table contains the parameter estimates for the ”Large Info Set” system

zt+1 = μz + xt + et+1

xt+1 = φxxt + φxKet+1

where zt+1 =
(
Δct+1, πt+1, y

(1)
t+1, y

(20)$
t+1 − y

(1)$
t+1

)�
. The system starts at x0 = 0. ”chol(Ω)” is the Cholesky

decomposition of var(et+1) = Ω. The data are in percent and sampled quarterly, 1952:2 to 2005:4. Standard

errors are computed from the Hessian.

B U.K. and U.S. Evidence on Real Bonds

Table 1 in Evans (1998) reports means, volatilities and autocorrelations for U.K. indexed yields for the

monthly sample January 1983 – November 1995. The Bank of England posts its own interpolated real

yield curves from U.K. indexed yields. The sample of these data starts later and has many missing

values for the early years, especially for short bonds. Panel A in Table B.3. therefore reproduces the

statistics from Table 1 in Evans (1998) for the early sample. Panel B in Table B.3 reports statistics

based on the data from the Bank of England starting in December 1995.

The data from the Bank of England can be downloaded in various files from the website

http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm. The data are daily observations.
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To construct a monthly sample, we take the last observation from each month. The shortest maturity

for which data are available consistently is 2 1/2 years. There are a few observations on individ-

ual maturities missing. We extrapolate these observations from observations on yields with similar

maturities.

Table B.3: U.K. Indexed Bonds

Panel A: January 1983 - November 1995

2 years 3 years 4 years 5 years 10 years

mean 6.12 5.29 4.62 4.34 4.12
volatility 1.83 1.17 0.70 0.53 0.45

autocorrelation 0.63 0.66 0.71 0.77 0.85

Panel B: December 1995 - March 2006

2 1/2 yr. 3 years 4 years 5 years 10 years 15 years 20 years

mean 2.59 2.56 2.51 2.48 2.41 2.38 2.33
volatility 0.86 0.78 0.70 0.67 0.66 0.69 0.74

autocorrelation 0.98 0.97 0.97 0.97 0.98 0.98 0.99

J. Huston McCullogh has constructed interpolated real yield curves from TIPS data. His website

http://www.econ.ohio-state.edu/jhm/ts/ts.html has monthly data that start in January 1997. Table

B.4 reports the properties of these real yields together with the McCullogh nominal yields from January

2000 until January 2006.

Table B.4: McCullogh Data

Panel A: Real Yield Curve

1 quarter 1 year 2 year 3 year 4 year 5 year

mean 0.79 1.06 1.39 1.69 1.95 2.16
volatility 1.86 1.61 1.37 1.23 1.15 1.09

autocorrelation .847 .872 .908 .935 .947 .951

Panel B: Nominal Yield Curve

mean 2.92 3.14 3.42 3.69 3.93 4.14
volatility 1.84 1.69 1.51 1.36 1.22 1.10

autocorrelation .963 .960 .954 .945 .935 .923
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C Alternative Data Definitions and Estimation Strategies

Section C.1 investigates the impact of using alternative inflation measures for the estimation. We

show that the choice of inflation series matters for the model’s predictions regarding the level of yields

in the 1970s and the volatility of yields. These alternative measures, especially CPI inflation, are,

however, not appropriate because they do not correspond to our measure of consumption. Section

C.2 investigates the impact of using alternative assumptions about population growth. We document

that the standard population growth series look strange and different from each other. We estimate

the model based on these alternatives and find that the numbers change, but not in ways that affect

the story we tell in the paper. Section C.3 investigates the impact of estimating the initial state x0.

Again, the numbers change, but not by much.

C.1 Inflation Data

We measure inflation with the NIPA price index that corresponds to precisely our measure of aggregate

consumption. This measure is the most appropriate for matching theory to data, and therefore we use

it in our empirical work. Our measure of inflation differs from other conventional inflation measures,

such as the Consumer Price Index. Here, we check the impact of using a different inflation measure

in our estimation.

Figure 10 plots our inflation measure together with CPI inflation in the top panel and inflation

measured by the GNP deflator in the lower panel. It is clear from the plot that our measure of inflation

has less high-frequency noise and is lower in the 1970s than CPI inflation. The measure is more similar

to the GDP deflator and other inflation measures (such as the personal consumption deflator) that

are computed from time-averaged data.

To check how these differences affect the implications of the benchmark model, we re-estimated

the state space system (19) with CPI inflation. The CPI-based system improves upon Figure 3,

because it generates higher nominal yields in the 1970s. It also improves upon Table 2 by producing

more volatility for nominal yields. For example, the volatilities of the n = 1, 4, and 20 maturity

CPI-implied yields are 2.14, 1.90, and 1.31 percent as opposed to the 1.80, 1.64, and 1.12 percent in

Table 2. However, a frequency decomposition as in Figure 6 reveals that the volatility in the CPI
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Figure 10: Comparison of our inflation measure (black line) with the alternative inlfation measure
(green line) indicated in the title of the subplot.

numbers generates volatility at the “wrong frequency” — volatility at frequencies higher than the

business cycle. Other popular inflation measures (such as the GNP Deflator or Personal Consumption

Deflator) generate results that are more similar to our benchmark results.

C.2 Population Data

As we explain on page 14, the results in the paper are based on the assumption that population growth

is constant. Under this assumption, per capita consumption growth is equal to the growth rate of the

raw consumption NIPA data minus a constant. The size of the constant only affects the interpretation

of the discount factor β in the model. The results in the paper are based on a constant which is equal

to zero.

The advantage of working with the assumption of constant population growth is that we do not

have to take a stance on which population series we want to use. There are surprisingly large differences

in the standard population series available from various data sources. Not only do these series look
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Figure 11: Data on annualized population growth from two different sources. The top panel plots
NIPA population growth. The bottom panel plots the original BLS series. The growth rates are
computed from the population series Nt as 400× (log Nt − logNt−1) .

strange, they also differ widely from each other.

Figure 11 plots two standard population growth rates. The two panels in the figure use quarterly

population numbers Nt and compute the annualized growth rate as 400 × (logNt − logNt−1). The

top panel plots the growth rate from the NIPA quarterly tables. The bottom panel plots the original

BLS numbers, where Nt is the quarterly average of the monthly data. The BLS data is downloadable

from http://www.bls.gov/cps.

Both series look strange, in that they exhibit large spikes. The spikes often happen at the beginning

of decades, which indicates that the construction of these population series suffers from interpolation

issues between each census. The other issue is that the two series look nothing alike. For example,

the NIPA population growth rate exhibits high-frequency fluctuations that are clearly not present in

the BLS data. We checked into various other databases (such as the population numbers posted on

FRED), and found that they also look strange and different from the two series in Figure 11.

We re-estimated the model with per-capita consumption based on the BLS data. Figure 12 in this
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Figure 12: Results with BLS population growth.

appendix is the analogue of Figure 1. We can see that the precise numbers differ, but the findings

are similar. Not surprisingly, the benchmark model now needs a lower discount factor, β = 1.0016

(as opposed to the β = 1.005 number we report on page 19) in order to match the sample average of

the shortest and longest yield in the dataset. The model also needs a lower coefficient of relative risk

aversion γ = 37 (as opposed to the γ = 59 in the paper).

We also re-estimated the model with per-capita consumption based on the NIPA data. Again,

Figure 13 is the analogue of Figure 1. Again, the precise numbers differ, but the findings are similar.

Again, not surprisingly, the benchmark model now needs a lower discount factor, β = 1.0014 (as

opposed to the β = 1.005 number we report on page 19) in order to match the sample average of

the shortest and longest yield in the dataset. Differently from the BLS data, the model now needs a

higher coefficient of relative risk aversion γ = 210 (as opposed to the γ = 59 in the paper).
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Figure 13: Results with NIPA population growth.

C.3 Initial State x0

To construct benchmark beliefs in Section 3 of the paper and beliefs with a large information set in

Section 4, we estimate the parameters μz, φx, K, and chol(Ω) of the state space model (19) using

maximum likelihood. We form the log likelihood function as the sum of log conditional Gaussian

densities of the observed vector zt+1 conditional on xt for t = 1, ..., T . Appendix A reports results

based on the assumption that the density for the first observation z1 conditions on the value x0 = 0

for the initial state, its unconditional mean. An alternative approach is to treat the initial state x0

as parameter which we estimate along with μz etc. Here, we report results based on this alternative

approach.

Tables C.1 and C.2 are the analogues of Tables A.1 and A.2 in Appendix A, but now we also

report estimates for the parameter vector x0. The parameter estimates for the benchmark model are

essentially the same. The results for the large infoset model are also similar.
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Table C.1: Maximum Likelihood For Benchmark

μz chol(Ω) φx φxK x0

Δc 0.823 0.424 0 0.514 −0.105 0.246 −0.114 1.070
− (0.021) − (0.149) (0.052) (0.068) (0.098) (0.417)

π 0.927 −0.085 0.291 0.255 1.013 0.101 0.522 −0.738
− (0.020) (0.014) (0.105) (0.034) (0.049) (0.065) (0.281)

Table C.2: Maximum Likelihood For Large Info Set Model

μz x0 chol(Ω)

Δc 0.823 0.620 0.420 0 0 0
– (0.570) (0.022) – – –

π 0.927 −0.903 −0.071 0.281 0 0
– (0.252) (0.020) (0.014) – –

y(1)$ 1.287 −0.962 0.043 0.035 0.226 0
– (0.257) (0.016) (0.016) (0.011) –

y(20)$ − y(1)$ 0.248 −0.167 −0.011 −0.019 −0.119 0.110
– (0.168) (0.011) (0.012) (0.010) (0.005)

φx φxK

Δc 0.659 0.333 0.132 −0.066 0.181 0.039 0.122 −0.098
(0.127) (0.113) (0.099) (0.074) (0.095) (0.047) (0.044) (0.030)

π −0.057 1.068 0.136 −0.036 −0.163 0.365 0.064 −0.098
(0.058) (0.045) (0.041) (0.030) (0.091) (0.064) (0.060) (0.043)

y(1)$ −0.005 −0.031 0.901 0.027 −0.398 0.060 0.684 0.052
(0.041) (0.034) (0.028) (0.019) (0.182) (0.129) (0.104) (0.075)

y(20)$ − y(1)$ 0.139 −0.028 −0.004 0.869 −0.203 −0.354 0.161 0.558
(0.103) (0.086) (0.069) (0.049) (0.248) (0.196) (0.149) (0.115)

Based on the new set of parameter values in Tables C.1 and C.2, we now select values for the

preference parameters to match the average short and long end of the nominal yield curve. For our

benchmark, those values are β = 1.005 and γ = 57. Tables C.3 and C.4 report results based on these

parameters.
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Table C.3: Average Yield Curves (% Per Year)

Panel A: Average Nominal Yield Curve

1 quarter 1 year 2 year 3 year 4 year 5 year

Data 5.15 5.56 5.76 5.93 6.06 6.14
SE (0.43) (0.43) (0.43) (0.42) (0.41) (0.41)

Benchmark Model 5.15 5.33 5.56 5.78 5.97 6.14
Expected (Log) Utility 4.92 4.92 4.91 4.90 4.89 4.88

Large Info Set with same β, γ 4.94 5.03 5.16 5.29 5.41 5.52
Large Info Set 5.15 5.31 5.53 5.74 5.95 6.14

Benchmark Model 1-5 year 5.43 5.56 5.73 5.88 6.02 6.14

SE Spreads 5-year minus 1 quarter yield 5-year minus 2-year yield
(0.13) (0.07)

Panel B: Average Real Yield Curve

Benchmark Model 0.84 0.64 0.49 0.38 0.30 0.23
Expected (Log) Utility 1.22 1.21 1.21 1.21 1.21 1.21

Large Info Set 0.70 0.40 0.17 0.04 −0.06 −0.14
Benchmark Model 1-5 year 1.32 1.19 1.08 1.01 0.95 0.91

Table C.4: Volatility Of Yields (% Per Year)

Panel A: Nominal Yields

1 quarter 1 year 2 year 3 year 4 year 5 year

Data 2.92 2.92 2.88 2.81 2.78 2.74
SE (0.36) (0.33) (0.32) (0.32) (0.31) (0.30)

Benchmark Model + Exp. (Log) U 1.80 1.64 1.48 1.34 1.23 1.13
Large Info Set 1.80 1.72 1.63 1.56 1.50 1.44

Panel B: Real Yields

Benchmark Model + Exp. (Log) U 0.76 0.54 0.45 0.41 0.37 0.34
Large Info Set 0.83 0.63 0.50 0.42 0.37 0.32
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